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Abstract 
In this study, we aim to identify the preferred test for assessing marginal homogeneity, compare McNemar’s and 
Liddell's exact tests, and determine the conditions under which each test is most appropriate. A Monte Carlo simulation 
approach was employed to develop and analyze both tests. The power and Type I error rates were computed for various 
sample sizes, effect sizes, and significance levels (α). Random samples ranging from 20 to 1000 were analyzed over 
500 iterations. Three different hypothetical scenarios were used to evaluate the performance of McNemar’s test and 
Liddell's exact test, considering different P12 and P21 values and using significance levels of 1% and 10%. The results 
indicate that Liddell's exact test is generally preferable, mainly when the effect sizes are moderate to large across 
nearly all sample sizes. McNemar’s test is not recommended for sample sizes of 20 or fewer. Liddell’s exact test is 
more advantageous when the proportions are small and close together, especially with larger sample sizes. 
 
Keywords: Comparative analysis; McNemar’s test; Liddell’s exact test; Marginal homogeneity; Monte carlo 
simulation 
 

 
Introduction 
In statistical analysis, variable classification and 
the choice of appropriate tests are crucial for 
accurate data interpretation. This research focuses 
on the comparative evaluation of McNemar’s test 
and Liddell's exact test; both used to assess 
marginal homogeneity in paired categorical data. 
Williams' (1946) classification of variables into 
nominal, ordinal, interval, and ratio scales has long 
been a standard, but its application in selecting the 
right test for marginal homogeneity remains a 
topic of discussion. 

The effectiveness of statistical tests in 
evaluating marginal homogeneity in paired 
categorical data is a significant concern in 
research. This study undertakes a comparative 
analysis of McNemar’s test and Liddell's exact 
test, using Monte-Carlo simulations to assess their 
performance under various conditions. This 
approach provides insights into which test is more 
suitable based on sample and effect sizes. 

Williams (1946) developed a measurement 
scale hierarchy with four categories: nominal, 
ordinal, interval, and ratio scales, each with 
prescribed appropriate statistical analyses. The 
nominal scale is the lowest, and the ratio scale is 

the highest. However, this typology has faced 
criticism from scholars such as Lord (1965), 
Guttman (1968), Tukey (1961), and Velleman and 
Wilkinson (1993), particularly regarding the 
justification of statistical methods based on these 
scale types. Velleman and Wilkinson (1993) 
highlighted situations where Stevens' 
categorization failed, leading to alternative 
taxonomies like the one proposed by Mosteller and 
Tukey (1977), which includes grades, ranks, 
counted fractions, counts, amounts, and balances. 

A categorical variable consists of a set of non-
numerical categories and comes in two types: 
nominal and ordinal. Nominal variables have 
unordered, mutually exclusive categories 
identified by numerals, letters, or colors, such as 
gender, marital status, party affiliation, race, and 
religious affiliation. The frequency count is the 
number of occurrences in each category. Nominal 
variables remain unchanged under transformations 
that preserve the relationship between subjects and 
their identifiers as long as categories are not 
combined, and their statistical analysis is invariant 
under the permutation of categories. 

A 2x2 contingency table displays the joint 
frequency distribution of two dichotomous 



KUJAS Journal: Vol. 2, 2025 

 
Website: koladaisiuniversity.edu.ng/kujas 

© KUJAS, Volume 2, 2025 

Faculty of Applied Sciences 

 
 

88 

 

classificatory variables, A and B. This table 
provides four category combinations and is 
summarized as follows: 
 

Table 1.1: Observed Frequencies 
 

  A           B Total 

1                        2 
1 𝑛11𝑛12 𝑛1. 
 2 𝑛21𝑛22 𝑛2. 
Total  𝑛.1𝑛.2 𝑁 

 
In this formulation, the marginal number of 
subjects in the i-th level of A is denoted by ni, and 
the marginal total number of subjects in the j-th 
level of B is denoted by n.j. The total sample size 
is N. If the row margin is assumed to be fixed, 
these totals are denoted by ni, and if the column 
margin is assumed to be fixed, these totals are 
denoted by n.j. Each entry in the table's body refers 
to a cell of the table. 

McNemar’s test is a nonparametric method for 
assessing marginal homogeneity in a 2×2 table, 
valid for paired data analysis. For larger N×N 
tables, it can be adapted to test for rater bias or 
equality of category thresholds. The Stuart-
Maxwell test complements it by providing an 
overall significance value across all categories. 
These tests are easy to use, practical, and require 
minimal assumptions. McNemar's test statistic is 

𝑋2 = 
(𝑛12   −𝑛21 )

2

𝑛12 
+ 𝑛21  with one degree of 

freedom. 
Liddell's exact test compares paired 

proportions, which is especially useful when 
McNemar’s assumptions are unmet. It treats the 
data as a binomial variable and calculates the 

probability that the ratio R’ =  
𝑛12

𝑛21+1
 equals 1, 

testing the null hypothesis. This test is ideal for 
scenarios where the same subjects are exposed to 
different conditions, such as comparing consumer 
preferences for two commercials. 
 
Method 
The power of a statistical test, as defined by Brown 
(2011), is the probability of rejecting the null 
hypothesis when it is false, thus confirming the 
alternative hypothesis. It is inversely related to the 
probability of a Type II error (false negative) and 
is influenced by the effect size, sample size, and 
significance criterion. Power analysis helps 

determine the minimum sample size needed to 
detect a given effect size and compares statistical 
tests. It is essential in hypothesis testing to ensure 
that the test can detect differences in the population 
(Brown, 2011). 

Several factors influence the power of a test, 
including the statistical significance criterion, the 
effect size, and the sample size. Increasing the 
significance criterion (e.g., from 0.05 to 0.10) can 
boost power and increase the risk of Type I errors 
(false positives). Larger effect sizes and sample 
sizes generally enhance power. Additionally, the 
precision of data measurements and the design of 
the experiment can impact power. For instance, 
balanced sample sizes in two-sample comparisons 
and optimized values in regression analysis can 
improve power (Brown, 2011). 

Typically, a power of 0.80 is considered 
adequate, implying a 4-to-1 trade-off between 
Type II (β) and Type I (α) errors. However, in 
contexts like medicine, higher power is often 
desired to avoid false negatives, even at the cost of 
more false positives. Power analysis is crucial for 
correct hypothesis rejection and determining 
necessary sample sizes to achieve precise 
estimates of population effect sizes (Brown, 2011). 

Power analysis can be performed before (a 
priori) or after (post hoc) data collection. A priori 
analysis estimates the required sample size to 
achieve adequate power, while post hoc analysis 
assesses the power of a completed study. However, 
post hoc power analysis is controversial and can be 
misleading, as it tends to reflect the p-value rather 
than providing meaningful insights (Brown, 2011). 

McNemar’s test is often required by funding 
agencies and review panels to ensure that studies 
are adequately powered. While underpowered 
studies in frequentist statistics are unlikely to 
effectively distinguish between hypotheses, 
Bayesian statistics focus on updating prior beliefs 
based on data. Despite this, power remains a useful 
measure to gauge the expected impact of an 
experiment on refining beliefs (Brown, 2011). 
 
Marginal Homogeneity 
Marginal homogeneity refers to the equality (or 
lack of significant difference) between the row 
marginal proportions and the corresponding 
column proportions. This concept is crucial in 
analyzing rater agreement, as differences in raters' 
marginal rates can be formally assessed using 
statistical tests of marginal homogeneity (Barlow, 
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1998; Bishop et al., 1975). Testing marginal 
homogeneity is straightforward when different 
raters rate different cases using a chi-squared test 
but becomes complex when different raters rate the 
same cases due to statistical dependence. 
Approaches to this problem include nonparametric 
tests, bootstrap methods, loglinear models, and 
latent trait models. 
 
McNemar’s Test 
McNemar’s test, introduced by Quinn McNemar 
in 1947, determines whether the row and column 
marginal frequencies are equal in 2x2 contingency 
tables with matched pairs. This test is standard in 
studies involving matched pairs, such as case-
control studies, and measurements at two different 
time points. The test focuses on the off-diagonal 
elements of the table, as shown below: 
 
Table 1.2: Observed Frequency for Matched Pairs 

Data 
 
Response 2  Response 1 Total  

   Yes       No  
Yes  𝑛11   𝑛12    𝑛1.    

No   𝑛21    𝑛22    𝑛2.    

Total  𝑛.1    𝑛.2    N 

 
McNemar’s test statistic is calculated as: 𝑋2 = 
   (  |𝑛12   −𝑛21 |−1)2

𝑛12   +𝑛21 
 

Liddell’s Exact Test 
Liddell’s exact test, an alternative to McNemar’s 
test, is used for paired proportions and is a 
particular case of the sign test (Journal of 
Epidemiology and Community Health, 1983). This 
test treats the n12 count as a binomial variable 
from the sample 𝑛12   +𝑛21    and uses the ratio R'= 
𝑛12   /𝑛21    to calculate a two-sided probability and 
confidence limits for relative risk. It is applied 
when comparing two laboratory methods or 
assessing the effect of a risk factor on a matched 
sample. 
 
Table 1.3: Corresponding Probability for Matched 

Pairs Data 
 
Response 2  Response 1 Total  

   Yes       No  

Yes  𝑝11   𝑝12    𝑝1.    

No   𝑝21    𝑝22    𝑝2.    

Total  𝑝.1    𝑝.2     

 
Both McNemar’s test and Liddell's exact test 
provide methods to assess marginal homogeneity, 
which is crucial for understanding rater agreement 
and paired proportion comparisons in various 
research contexts. 

 
Simulation Study 
In this section, the simulation of this study was 
presented:

 
3.1 First Scheme When α = 0.01 
(i) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.2 and P21=0.6 with effect size 

δ=0.4. 

 
Fig. 3.1: A graphical display of the result for the power of both tests when P12 =0.2 and P21 = 0.6 at α=0.01 
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(ii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.3 and P21=0.6 with effect size 
δ=0.3. 
 

 
Fig. 3.2: A graphical display of the result for the power of both tests when P12 =0.3 and P21 = 0.6 at α=0.01 

 

 
Fig. 3.3: A graphical display of the result for the power of both tests when P12 =0.4 and P21 = 0.6 at α=0.01 

 
It can be seen that Liddell’s exact test has 100% power for almost the sample sizes, while McNemar’s test 
power is low until it reaches 150 sample sizes before it becomes stable. 
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(iii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when    P12=0.5 and P21=0.6 with effect 
size δ=0.1. 
 

 
Fig. 3.4: A graphical display of the result for the power of both tests when P12 =0.5 and P21 = 0.6 at α=0.05 

 
It can be seen that Liddell’s exact test has 100% power for almost the sample sizes, while McNemar’s test 
power is low until it reaches 150 sample sizes before it becomes stable. 
 
3.2  Second Scheme When α = 0.01 
(i) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when    P12=0.9 and P21=0.1 with effect 

size δ=0.8.at α= 0.01 
 

 
 

Fig. 3.5: A graphical display of the result for the power of both tests when P12 =0.9 and P21 = 0.1 at α=0.01 
 
It can be seen that Liddell’s exact test has 100% power for all the sample sizes, while McNemar’s test 
power is only for lower sample sizes. 



KUJAS Journal: Vol. 2, 2025 

 
Website: koladaisiuniversity.edu.ng/kujas 

© KUJAS, Volume 2, 2025 

Faculty of Applied Sciences 

 
 

92 

 

(ii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.8 and P21=0.2 with effect size 
δ=0.6. 
 

 
Fig. 3.6: A graphical display of the result for the power of both tests when P12 =0.8 and P21 = 0.2 at α=0.01 

 
Both of our very poor for low sample sizes (20), but Liddell's exact test has 100% power for the remaining 
sample sizes, but McNemar’s test power increases as the sample size increases. 
 
(iii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when    P12=0.7 and P21=0.3 with effect 

size δ=0.4. 
 

 
Fig. 3.7: A graphical display of the result for the power of both tests when P12 =0.7 and P21 = 0.3 at α=0.05 

 
It can be seen that Liddell’s exact test has 100% power for almost the sample sizes while McNemar’s test 
power increases and the sample size increasing. 
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(iv) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.5 and P21=0.4 with effect size 
δ=0.1. 
 

 
Fig. 3.8: A graphical display of the result for the power of both tests when P12 =0.5 and P21 = 0.4 at α=0.01 

 
It can be seen that Liddell’s exact test has 100% power for almost all sample sizes, while McNemar’s test 
power increases as the sample size increases. 
 
3.3  Third Scheme When α = 0.01 
(i) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when    P12=0.2 and P21=0.2 with effect 

size δ=0 
 

 
Fig. 3.9: A graphical display of the result for the type I error committed by both tests when P12 =0.2 and P21 = 0.2 at 

α=0.05 
 
From the graph, it can be seen that the type I error committed by McNemar’s test was very low in the 
sample size (≤ 75) but increased as the sample sizes increased. In contrast, the type I error committed by 
Lindell's exact test is only high for the sample sizes (≤50) and very low for the remaining sample sizes.  
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(ii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.2 and P21=0.21 with effect size 
δ=0.01. 

 
Fig. 3.10: A graphical display of the result for the type I error committed by both tests when P12 =0.2 and P21 = 0.21 
at α=0.05 
 
From the graph, it has been shown that I error committed by McNemar’s test was very low for a low sample 
size (≤ 50) but increased as the sample sizes. Type I error committed by Lindell's exact test is unstable 
throughout the sample sizes considered. 
 
(iii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.2 and P21=0.22 with effect size 

δ=0.02. 
 

 
Fig. 3.11: A graphical display of the result for the type I error committed by both tests when P12 =0.2 and P21 = 0.22 

at α=0.05 
 
From the graph, it has been shown that I error committed by McNemar's test was deficient for a low sample 
size (≤ 150) but increased as the sample sizes. The type I error committed by Liddell's exact test is unstable 
throughout the sample sizes. 
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(iv) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.2 and P21=0.23 with effect size 
δ=0.03 

 
Fig. 3.12: A graphical display of the result for the type I error committed by both tests when P12 =0.2 and P21 = 0.23 

at α=0.05 
 
From the graph above, it can be deduced that the type I error committed by both tests is unstable throughout 
the sample sizes considered. 
 
3.4  First Scheme When α = 0.1 
(i) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.2 and P21=0.6 with effect size 

δ=0.4. 
 

 
Fig. 3.13: A graphical display of the result for the power of both tests when P12 =0.2 and P21 = 0.6 at α=0.1 

 
It can be seen that Liddell’s exact test has 100% power for all the sample sizes, while McNemar’s test 
power is only for lower sample sizes. 
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(ii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.3 and P21=0.6 with effect size 
δ=0.3. 

 
Fig. 3.14: A graphical display of the result for the power of both tests when P12 =0.3 and P21 = 0.6 at α=0.1 

 
It can be seen that Liddell’s exact test has 100% power for all the sample sizes, while McNemar’s test 
power is only for lower sample sizes. 
 
(iii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.4 and P21=0.6 with effect size 

δ=0.2. 
 

 
Fig. 3.15: A graphical display of the result for the power of both tests when P12 =0.4 and P21 = 0.6 at α=0.1 

 
It can be seen that Liddell’s exact test has 100% power for all the sample sizes, while McNemar’s test 
power is only for lower sample sizes. 
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(iv) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.5 and P21=0.6 with effect size 
δ=0.1. 

 
Fig. 3.16: A graphical display of the result for the power of both tests when P12 =0.5 and P21 = 0.6 at α=0.1 

 
Liddell's exact test has 100% power for all sample sizes, while McNemar’s test power is only fair for lower 
sample sizes. 
 
3.5  Second Scheme When α = 0.1 
(i) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.9 and P21=0.1 with effect size 

δ=0.8. 
 

 
Fig. 3.17: A graphical display of the result for the power of both tests when P12 =0.9 and P21 = 0.1 at α=0.1 

 
Both of our very poor for low sample sizes (≤ 20), but Liddell's exact test has 100% power for the remaining 
sample sizes. McNemar’s test power increases as the sample size increases. 
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(ii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when    P12=0.8 and P21=0.2 with effect 
size δ=0.6. 

 
Fig. 3.18: A graphical display of the result for the power of both tests when P12 =0.8 and P21 = 0.2 at α=0.1 

 
Both of our very poor for low sample sizes (≤ 20), but Liddell's exact test has 100% power for the remaining 
sample sizes. McNemar’s test power increases as the sample size increases. 
 
(iii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.7 and P21=0.3 with effect size 

δ=0.4. 
 

 
Fig. 3.19: A graphical display of the result for the power of both tests when P12 =0.7 and P21 = 0.3 at α=0.1 

 
It can be seen that Liddell’s exact test has 100% power for almost all the sample sizes, while McNemar’s 
test power increases as the sample size increases.  
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(iv) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.5 and P21=0.4 with effect size 
δ=0.1. 

 
Fig. 3.20: A graphical display of the result for the power of both tests when P12 =0.5 and P21 = 0.4 at α=0.1 

 
It can be seen that Liddell’s exact test has 100% power for almost all sample sizes, while McNemar’s test 
power increases as the sample size increases. 
 
3.6  Third Scheme When α = 0.1 
(i) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.2 and P21=0.2 with effect size 

δ=0 
 

 
Fig. 3.21: A graphical display of the result for the type I error committed by both tests when P12 =0.2 and P21 = 0.2 at 

α=0.05 
 
From the graph, it has been shown that the type I error committed by McNemar’s test was low for a low 
sample size (≤250) but increased as the sample sizes increased, while the type I error committed by Liddell’s 
exact test was low and unstable throughout the sample sizes considered. 
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(ii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.2 and P21=0.21 with effect size 
δ=0.01. 

 
Fig. 3.22: A graphical display of the result for the type I error committed by both tests when P12 =0.2 and P21 = 0.21 

at α=0.05 
 
From the graph, it has been shown that the type I error committed by McNemar's test was low for a low 
sample size (≤500) but increases as the sample sizes increase. In contrast, the type I error committed by 
Liddell's exact test was high for the sample sizes ≤ 50, then low and unstable for the remaining sample sizes 
considered. 
 
(iii) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when    P12=0.2 and P21=0.22 with effect 

size δ=0.02. 
 

 
Fig. 3.23: A graphical display of the result for the type I error committed by both tests when P12 =0.2 and P21 = 0.22 

at α=0.05 
 
From the graph, it has been shown that the type I error committed by McNemar’s test was low for a low 
sample size (≤750), while the type I error committed by Liddell’s exact test was low and unstable for the 
sample sizes considered. 
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(iv) H0:  P12-P21=δ versus H1: P12- P21= δ, where δ=0 under H0, when P12=0.2 and P21=0.23 with effect size 
δ=0.03. 
 

 
Fig. 3.24: A graphical display of the result for the type I error committed by both tests when P12 =0.2 and P21 = 0.23 

at α=0.05 
 
From the graph, it has been shown that the type I error committed by McNemar’s test was low for all the 
sample sizes considered, while the type I error committed by Liddell's exact test was high for the sample 
sizes ≤ 50, then low and unstable for the remaining sample sizes considered. 
 
Discussion 
High Effect Sizes (0.6 and 0.8) at 0.01 
Significance Level: 
At a 0.01 level of significance, both tests exhibited 
low power for small sample sizes (≤ 20), 
particularly at an effect size of 0.6. As sample sizes 
increased, the power of McNemar’s test improved, 
whereas Liddell’s exact test consistently achieved 
100% power across nearly all considered sample 
sizes. 
 
Moderate Effect Sizes (0.1, 0.2, 0.3, 0.4) at 0.01 
Significance Level: 
For moderate effect sizes at the 0.01 significance 
level, both tests demonstrated poor power with 
small sample sizes (≤ 20). The power of 
McNemar’s test increased with larger sample 
sizes, while Liddell’s exact test maintained 100% 
power across nearly all sample sizes. 
 
No and Low Effect Sizes (0, 0.01, 0.02, 0.03) at 
0.01 Significance Level: 
At a 0.01 level of significance with no or low effect 
sizes, McNemar’s test exhibited shallow Type I 
error rates for small sample sizes (≤ 20), which 
increased with larger sample sizes. In contrast, 
Liddell's exact test showed high Type I error rates 

for small sample sizes (≤ 50), but these error rates 
decreased significantly for the larger sample sizes 
considered. 
 
High Effect Sizes (0.6 and 0.8) at 0.1 Significance 
Level: 
At a 0.1 level of significance, McNemar’s test 
exhibited low power for small sample sizes (≤ 20), 
particularly at an effect size of 0.6. The power 
increased sharply, approaching 100% as the 
sample size increased. Liddell’s exact test, 
however, consistently achieved 100% power 
across nearly all sample sizes. 
 
Moderate Effect Sizes (0.1, 0.2, 0.3, 0.4) at 0.1 
Significance Level: 
For moderate effect sizes at the 0.1 significance 
level, Liddell's exact test demonstrated 100% 
power across nearly all sample sizes. In contrast, 
McNemar’s test showed low power for small 
sample sizes (≤ 20), which increased rapidly, 
approaching 100% with larger sample sizes. 
 
No and Low Effect Sizes (0, 0.01, 0.02, 0.03) at 
0.1 Significance Level: 
At a 0.1 level of significance with no or low effect 
sizes, McNemar’s test showed shallow Type I 
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error rates for small sample sizes (≤ 20), which 
increased as sample sizes grew. Meanwhile, 
Liddell's exact test exhibited high Type I error 
rates for small sample sizes, which decreased and 
became less stable for larger sample sizes. 
 
Conclusions 
Based on the analysis conducted, several key 
conclusions can be drawn. Firstly, the power of 
both McNemar's and Liddell's exact tests is 
significantly influenced by sample size. Both tests 
exhibited improved performance with larger 
sample sizes compared to smaller ones. The level 
of significance also plays a critical role, as both 
tests demonstrated greater power at higher 
significance levels. Effect size is another critical 
factor; both tests were more potent at moderate to 
high effect sizes. 

Furthermore, the preference between the two 
tests depends on specific conditions. Liddell’s 
exact test is generally more suitable when dealing 
with large sample sizes and low effect sizes. 
However, McNemar’s test may still be appropriate 
for situations involving smaller sample sizes with 
low effect sizes. Liddell's test is recommended 
when the proportions are small and close, 
especially when the sample size is large. Given 
these findings, it is crucial to carefully choose the 
appropriate test based on the specific 
characteristics of the data to achieve reliable 
results. 
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