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Abstract

In this study, we aim to identify the preferred test for assessing marginal homogeneity, compare McNemar’s and
Liddell's exact tests, and determine the conditions under which each test is most appropriate. A Monte Carlo simulation
approach was employed to develop and analyze both tests. The power and Type I error rates were computed for various
sample sizes, effect sizes, and significance levels (o). Random samples ranging from 20 to 1000 were analyzed over
500 iterations. Three different hypothetical scenarios were used to evaluate the performance of McNemar’s test and
Liddell's exact test, considering different P12 and P2 values and using significance levels of 1% and 10%. The results
indicate that Liddell's exact test is generally preferable, mainly when the effect sizes are moderate to large across
nearly all sample sizes. McNemar’s test is not recommended for sample sizes of 20 or fewer. Liddell’s exact test is
more advantageous when the proportions are small and close together, especially with larger sample sizes.
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Introduction

In statistical analysis, variable classification and
the choice of appropriate tests are crucial for
accurate data interpretation. This research focuses
on the comparative evaluation of McNemar’s test
and Liddell's exact test; both used to assess
marginal homogeneity in paired categorical data.
Williams' (1946) classification of variables into
nominal, ordinal, interval, and ratio scales has long
been a standard, but its application in selecting the
right test for marginal homogeneity remains a
topic of discussion.

The effectiveness of statistical tests in
evaluating marginal homogeneity in paired
categorical data is a significant concern in
research. This study undertakes a comparative
analysis of McNemar’s test and Liddell's exact
test, using Monte-Carlo simulations to assess their
performance under various conditions. This
approach provides insights into which test is more
suitable based on sample and effect sizes.

Williams (1946) developed a measurement
scale hierarchy with four categories: nominal,
ordinal, interval, and ratio scales, each with
prescribed appropriate statistical analyses. The
nominal scale is the lowest, and the ratio scale is

the highest. However, this typology has faced
criticism from scholars such as Lord (1965),
Guttman (1968), Tukey (1961), and Velleman and
Wilkinson (1993), particularly regarding the
justification of statistical methods based on these
scale types. Velleman and Wilkinson (1993)
highlighted situations where Stevens'
categorization failed, leading to alternative
taxonomies like the one proposed by Mosteller and
Tukey (1977), which includes grades, ranks,
counted fractions, counts, amounts, and balances.

A categorical variable consists of a set of non-
numerical categories and comes in two types:
nominal and ordinal. Nominal variables have
unordered, mutually exclusive categories
identified by numerals, letters, or colors, such as
gender, marital status, party affiliation, race, and
religious affiliation. The frequency count is the
number of occurrences in each category. Nominal
variables remain unchanged under transformations
that preserve the relationship between subjects and
their identifiers as long as categories are not
combined, and their statistical analysis is invariant
under the permutation of categories.

A 2x2 contingency table displays the joint
frequency distribution of two dichotomous
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classificatory variables, A and B. This table
provides four category combinations and is
summarized as follows:

Table 1.1: Observed Frequencies

A B Total
1 2
1 LRV n.
2 USIUSY n,
Total nin, N

In this formulation, the marginal number of
subjects in the i-th level of A is denoted by n; and
the marginal total number of subjects in the j-th
level of B is denoted by n.;. The total sample size
is N. If the row margin is assumed to be fixed,
these totals are denoted by n;, and if the column
margin is assumed to be fixed, these totals are
denoted by n.;. Each entry in the table's body refers
to a cell of the table.

McNemar’s test is a nonparametric method for
assessing marginal homogeneity in a 2x2 table,
valid for paired data analysis. For larger NxN
tables, it can be adapted to test for rater bias or
equality of category thresholds. The Stuart-
Maxwell test complements it by providing an
overall significance value across all categories.
These tests are easy to use, practical, and require
minimal assumptions. McNemar's test statistic is
X2 = (n1z —npy)?

- + n,; with one degree of
12

freedom.

Liddell's exact test compares paired
proportions, which is especially useful when
McNemar’s assumptions are unmet. It treats the
data as a binomial variable and calculates the

probability that the ratio R’ = nnlil equals 1,

21
testing the null hypothesis. This test is ideal for
scenarios where the same subjects are exposed to
different conditions, such as comparing consumer
preferences for two commercials.

Method

The power of a statistical test, as defined by Brown
(2011), is the probability of rejecting the null
hypothesis when it is false, thus confirming the
alternative hypothesis. It is inversely related to the
probability of a Type Il error (false negative) and
is influenced by the effect size, sample size, and
significance criterion. Power analysis helps

determine the minimum sample size needed to
detect a given effect size and compares statistical
tests. It is essential in hypothesis testing to ensure
that the test can detect differences in the population
(Brown, 2011).

Several factors influence the power of a test,
including the statistical significance criterion, the
effect size, and the sample size. Increasing the
significance criterion (e.g., from 0.05 to 0.10) can
boost power and increase the risk of Type I errors
(false positives). Larger effect sizes and sample
sizes generally enhance power. Additionally, the
precision of data measurements and the design of
the experiment can impact power. For instance,
balanced sample sizes in two-sample comparisons
and optimized values in regression analysis can
improve power (Brown, 2011).

Typically, a power of 0.80 is considered
adequate, implying a 4-to-1 trade-off between
Type II (B) and Type I (a) errors. However, in
contexts like medicine, higher power is often
desired to avoid false negatives, even at the cost of
more false positives. Power analysis is crucial for
correct hypothesis rejection and determining
necessary sample sizes to achieve precise
estimates of population effect sizes (Brown, 2011).

Power analysis can be performed before (a
priori) or after (post hoc) data collection. A priori
analysis estimates the required sample size to
achieve adequate power, while post hoc analysis
assesses the power of a completed study. However,
post hoc power analysis is controversial and can be
misleading, as it tends to reflect the p-value rather
than providing meaningful insights (Brown, 2011).

McNemar’s test is often required by funding
agencies and review panels to ensure that studies
are adequately powered. While underpowered
studies in frequentist statistics are unlikely to
effectively distinguish between hypotheses,
Bayesian statistics focus on updating prior beliefs
based on data. Despite this, power remains a useful
measure to gauge the expected impact of an
experiment on refining beliefs (Brown, 2011).

Marginal Homogeneity

Marginal homogeneity refers to the equality (or
lack of significant difference) between the row
marginal proportions and the corresponding
column proportions. This concept is crucial in
analyzing rater agreement, as differences in raters'
marginal rates can be formally assessed using
statistical tests of marginal homogeneity (Barlow,
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1998; Bishop et al.,, 1975). Testing marginal
homogeneity is straightforward when different
raters rate different cases using a chi-squared test
but becomes complex when different raters rate the
same cases due to statistical dependence.
Approaches to this problem include nonparametric
tests, bootstrap methods, loglinear models, and
latent trait models.

McNemar’s Test

McNemar’s test, introduced by Quinn McNemar
in 1947, determines whether the row and column
marginal frequencies are equal in 2x2 contingency
tables with matched pairs. This test is standard in
studies involving matched pairs, such as case-
control studies, and measurements at two different
time points. The test focuses on the off-diagonal
elements of the table, as shown below:

Table 1.2: Observed Frequency for Matched Pairs

Data
Response 2 Response 1 Total
Yes No
Yes N1 Ny ny.
No U N2z ny,
Total n, n, N

McNemar’s test statistic is calculated as: X ? =
(In1z —npq |-1)?
Niz +N21

3.1 First Scheme When o= 0.01

Liddell’s Exact Test

Liddell’s exact test, an alternative to McNemar’s
test, is used for paired proportions and is a
particular case of the sign test (Journal of
Epidemiology and Community Health, 1983). This
test treats the nl2 count as a binomial variable
from the sample n,, +n,; and uses the ratio R'=
n4, /nyq to calculate a two-sided probability and
confidence limits for relative risk. It is applied
when comparing two laboratory methods or
assessing the effect of a risk factor on a matched
sample.

Table 1.3: Corresponding Probability for Matched

Pairs Data
Response 2 Response 1 Total
Yes No
Yes P11 P12 P1.
No P21 P22 p2.
Total D1 Po

Both McNemar’s test and Liddell's exact test
provide methods to assess marginal homogeneity,
which is crucial for understanding rater agreement
and paired proportion comparisons in various
research contexts.

Simulation Study
In this section, the simulation of this study was
presented:

(1)  Ho: P12-P21=6 versus Hi: Pi2- P2;= 0, where 6=0 under Hy, when P,=0.2 and P,,=0.6 with effect size

0=0.4.

at alpha level of 0.01
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Fig. 3.1: A graphical display of the result for the power of both tests when P, =0.2 and P»; = 0.6 at a=0.01
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(i1) Ho: P12-P21=6 versus Hi: Pi2- P2;= 0, where 6=0 under Hy, when P,=0.3 and P,,=0.6 with effect size
0=0.3.

at alpha level of 0.01
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Fig. 3.2: A graphical display of the result for the power of both tests when P, =0.3 and P»; = 0.6 at 0=0.01
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Fig. 3.3: A graphical display of the result for the power of both tests when P, =0.4 and P»; = 0.6 at 0=0.01

It can be seen that Liddell’s exact test has 100% power for almost the sample sizes, while McNemar’s test
power is low until it reaches 150 sample sizes before it becomes stable.
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(ii1) Ho: P12-P21=0 versus Hj: Pi2- P21= 8, where 6=0 under Ho, when  P,=0.5 and P,;=0.6 with effect
size 6=0.1.

at alpha level of 0.01
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Fig. 3.4: A graphical display of the result for the power of both tests when P, =0.5 and P»; = 0.6 at a=0.05

It can be seen that Liddell’s exact test has 100% power for almost the sample sizes, while McNemar’s test
power is low until it reaches 150 sample sizes before it becomes stable.

3.2 Second Scheme When a = 0.01

(1)  Ho: P12-P21=6 versus Hi: Pi2- P21= 8, where 6=0 under Ho, when  P,=0.9 and P»;=0.1 with effect
size 6=0.8.at 0= 0.01
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Fig. 3.5: A graphical display of the result for the power of both tests when P, =0.9 and P»; = 0.1 at a=0.01

It can be seen that Liddell’s exact test has 100% power for all the sample sizes, while McNemar’s test
power is only for lower sample sizes.
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(i1)) Ho: P12-P21=06 versus Hi: Pi2- P2;= 0, where 6=0 under Hy, when P,=0.8 and P,;=0.2 with effect size
0=0.6.

at alpha level of 0.01
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Fig. 3.6: A graphical display of the result for the power of both tests when P, =0.8 and P»; = 0.2 at 0=0.01

Both of our very poor for low sample sizes (20), but Liddell's exact test has 100% power for the remaining
sample sizes, but McNemar’s test power increases as the sample size increases.

(iii) Ho: P12-P21=0 versus Hi: Pi2- P21= 8, where 6=0 under Ho, when  P,=0.7 and P»;=0.3 with effect
size 6=0.4.
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Fig. 3.7: A graphical display of the result for the power of both tests when P, =0.7 and P»; = 0.3 at 0=0.05

It can be seen that Liddell’s exact test has 100% power for almost the sample sizes while McNemar’s test
power increases and the sample size increasing.
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(iv) Ho: P12-P21=06 versus Hi: Pi2- P2;= 0, where 6=0 under Ho, when P,=0.5 and P,,=0.4 with effect size
0=0.1.

at alpha level of 0.01
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Fig. 3.8: A graphical display of the result for the power of both tests when P, =0.5 and P»; = 0.4 at 0=0.01

It can be seen that Liddell’s exact test has 100% power for almost all sample sizes, while McNemar’s test
power increases as the sample size increases.

3.3 Third Scheme When a = 0.01

(1)  Ho: P12-P21=6 versus Hi: Pi2- P21= 8, where 6=0 under Ho, when  P,=0.2 and P»;=0.2 with effect
size 6=0

at alpha level of 0.01

‘% _|
%Q a B
Ee|
(=N
= I
@
i
[N
P [} —
g | IH .
= ||| LS
3 = - [Hi I
£ 1,71 o L g
& u"“c ] _____Zehet . —e— Mcnemar
O | ket NN P e sbnaiddeise
T T T T T T
0 200 400 600 800 1000

Sample sizes

Fig. 3.9: A graphical display of the result for the type I error committed by both tests when P, =0.2 and P»; = 0.2 at
a=0.05

From the graph, it can be seen that the type I error committed by McNemar’s test was very low in the
sample size (< 75) but increased as the sample sizes increased. In contrast, the type I error committed by
Lindell's exact test is only high for the sample sizes (<50) and very low for the remaining sample sizes.
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(i1) Ho: P12-P21=0 versus Hi: Pi2- P2;= 6, where 6=0 under Ho, when P1,=0.2 and P»;=0.21 with effect size

0=0.01.
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Fig. 3.10: A graphical display of the result for the type I error committed by both tests when P> =0.2 and P»; = 0.21
at 0=0.05

From the graph, it has been shown that I error committed by McNemar’s test was very low for a low sample
size (< 50) but increased as the sample sizes. Type I error committed by Lindell's exact test is unstable
throughout the sample sizes considered.

(iii) Ho: P12-P2:1=08 versus Hi: Pi2- P2;= 6, where 6=0 under Ho, when P1,=0.2 and P»;=0.22 with effect size
6=0.02.
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Fig. 3.11: A graphical display of the result for the type I error committed by both tests when P> =0.2 and Py = 0.22
at 0=0.05

From the graph, it has been shown that I error committed by McNemar's test was deficient for a low sample
size (< 150) but increased as the sample sizes. The type I error committed by Liddell's exact test is unstable
throughout the sample sizes.
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(iv) Ho: P12-P21=0 versus Hi: Pi2- P2;= 6, where 6=0 under Ho, when P1,=0.2 and P»;=0.23 with effect size
6=0.03

at alpha level of 0.01
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Fig. 3.12: A graphical display of the result for the type I error committed by both tests when P> =0.2 and P, = 0.23
at 0=0.05

From the graph above, it can be deduced that the type I error committed by both tests is unstable throughout
the sample sizes considered.

3.4 First Scheme When o= 0.1

(1)  Ho: P12-P21=6 versus Hi: Pi2- P2;= 8, where 6=0 under Ho, when P1,=0.2 and P,,=0.6 with effect size
0=0.4.

at alpha level of 0.1
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Fig. 3.13: A graphical display of the result for the power of both tests when P, =0.2 and P»; = 0.6 at a=0.1

It can be seen that Liddell’s exact test has 100% power for all the sample sizes, while McNemar’s test
power is only for lower sample sizes.

Website: koladaisiuniversity.edu.ng/kujas
© KUJAS, Volume 2, 2025

Faculty of Applied Sciences




96 KUJAS Journal: Vol. 2, 2025

(i1) Ho: P12-P21=06 versus Hi: Pi2- P2;= 0, where 6=0 under Hy, when P,=0.3 and P,,=0.6 with effect size

at alpha level of 0.1
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Fig. 3.14: A graphical display of the result for the power of both tests when P, =0.3 and P»; = 0.6 at a=0.1

It can be seen that Liddell’s exact test has 100% power for all the sample sizes, while McNemar’s test
power is only for lower sample sizes.

(ii1) Ho: P12-P2:1=0 versus H;: Pi2- P21= 8, where 6=0 under Ho, when P;,=0.4 and P»;=0.6 with effect size
6=0.2.
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Fig. 3.15: A graphical display of the result for the power of both tests when P> =0.4 and P,; = 0.6 at 0=0.1

It can be seen that Liddell’s exact test has 100% power for all the sample sizes, while McNemar’s test
power is only for lower sample sizes.
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(iv) Ho: P12-P21=06 versus Hi: Pi2- P2;= 0, where 6=0 under Hy, when P,=0.5 and P,,=0.6 with effect size
0=0.1.

at alpha level of 0.1
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Fig. 3.16: A graphical display of the result for the power of both tests when P, =0.5 and P»; = 0.6 at a=0.1

Liddell's exact test has 100% power for all sample sizes, while McNemar’s test power is only fair for lower
sample sizes.

3.5 Second Scheme When a = 0.1

(1)  Ho: P12-P2;=0 versus H;: Pi2- P21= 8, where 6=0 under Ho, when P1,=0.9 and P»;=0.1 with effect size
6=0.8.
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Fig. 3.17: A graphical display of the result for the power of both tests when P> =0.9 and P»; = 0.1 at a=0.1

Both of our very poor for low sample sizes (< 20), but Liddell's exact test has 100% power for the remaining
sample sizes. McNemar’s test power increases as the sample size increases.
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(i1)) Ho: P12-P21=0 versus Hj: Pi2- P21= 8, where 6=0 under Hy, when

size 6=0.6.

at alpha level of 0.1
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Fig. 3.18: A graphical display of the result for the power of both tests when P1> =0.8 and P»; = 0.2 at 0=0.1

Both of our very poor for low sample sizes (< 20), but Liddell's exact test has 100% power for the remaining
sample sizes. McNemar’s test power increases as the sample size increases.

(iii) Ho: P12-P21=6 versus Hi: Pi2- P2;= 8, where 6=0 under Ho, when P1,=0.7 and P»,=0.3 with effect size

0=0.4.

at alpha level of 0.1
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Fig. 3.19: A graphical display of the result for the power of both tests when P> =0.7 and P,; = 0.3 at 0=0.1

It can be seen that Liddell’s exact test has 100% power for almost all the sample sizes, while McNemar’s
test power increases as the sample size increases.
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(iv) Ho: P12-P21=06 versus Hi: Pi2- P2;= 0, where 6=0 under Ho, when P,=0.5 and P,,=0.4 with effect size

at alpha level of 0.1
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Fig. 3.20: A graphical display of the result for the power of both tests when P, =0.5 and P»; = 0.4 at a=0.1

It can be seen that Liddell’s exact test has 100% power for almost all sample sizes, while McNemar’s test
power increases as the sample size increases.

3.6 Third Scheme When o = 0.1
(1)  Ho: P12-P21=6 versus Hi: Pi2- P2;= 8, where 6=0 under Ho, when P1,=0.2 and P,,=0.2 with effect size
=0

at alpha level of 0.1

s
% @ :-“h,%
® . aatfre
g & o 20
& s 5 gadl
s || | 2
= ol
%7 | i
2 | 3%
% g - o Ic.-'g-‘.r ]
; |
2 | BT
3 8 o il
£ el !
i Lol |1 Il | —s— Mcnemar
o - diREseerenensssssreeseneenes iddel
T T T T T T
0 200 400 600 800 1000

Sample sizes

Fig. 3.21: A graphical display of the result for the type I error committed by both tests when P12 =0.2 and P»; = 0.2 at
a=0.05

From the graph, it has been shown that the type I error committed by McNemar’s test was low for a low
sample size (<250) but increased as the sample sizes increased, while the type I error committed by Liddell’s
exact test was low and unstable throughout the sample sizes considered.
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(i1) Ho: P12-P21=0 versus Hi: Pi2- P2;= 6, where 6=0 under Ho, when P1,=0.2 and P»;=0.21 with effect size
0=0.01.

at alpha level of 0.1
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Fig. 3.22: A graphical display of the result for the type I error committed by both tests when P> =0.2 and P,; = 0.21
at 0=0.05

From the graph, it has been shown that the type I error committed by McNemar's test was low for a low
sample size (<500) but increases as the sample sizes increase. In contrast, the type I error committed by
Liddell's exact test was high for the sample sizes < 50, then low and unstable for the remaining sample sizes
considered.

(ii1) Ho: Pi2-P21=0 versus Hi: Pi2- P2;= 8, where 6=0 under Ho, when P1,=0.2 and P,;=0.22 with effect
size 6=0.02.

at alpha level of 0.1
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Fig. 3.23: A graphical display of the result for the type I error committed by both tests when P> =0.2 and P»; = 0.22
at a=0.05

From the graph, it has been shown that the type I error committed by McNemar’s test was low for a low
sample size (<750), while the type I error committed by Liddell’s exact test was low and unstable for the
sample sizes considered.
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(iv) Ho: P12-P21=0 versus Hi: Pi2- P2;= 6, where 6=0 under Ho, when P1,=0.2 and P»;=0.23 with effect size
6=0.03.

at alpha level of 0.1
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Fig. 3.24: A graphical display of the result for the type I error committed by both tests when P> =0.2 and P»; = 0.23
at 0=0.05

From the graph, it has been shown that the type I error committed by McNemar’s test was low for all the
sample sizes considered, while the type I error committed by Liddell's exact test was high for the sample

sizes < 50, then low and unstable for the remaining sample sizes considered.

Discussion

High Effect Sizes (0.6 and 0.8) at 0.01
Significance Level:

At a 0.01 level of significance, both tests exhibited
low power for small sample sizes (< 20),
particularly at an effect size of 0.6. As sample sizes
increased, the power of McNemar’s test improved,
whereas Liddell’s exact test consistently achieved
100% power across nearly all considered sample
sizes.

Moderate Effect Sizes (0.1, 0.2, 0.3, 0.4) at 0.01
Significance Level:

For moderate effect sizes at the 0.01 significance
level, both tests demonstrated poor power with
small sample sizes (< 20). The power of
McNemar’s test increased with larger sample
sizes, while Liddell’s exact test maintained 100%
power across nearly all sample sizes.

No and Low Effect Sizes (0, 0.01, 0.02, 0.03) at
0.01 Significance Level:

Ata0.01 level of significance with no or low effect
sizes, McNemar’s test exhibited shallow Type I
error rates for small sample sizes (< 20), which
increased with larger sample sizes. In contrast,
Liddell's exact test showed high Type I error rates

for small sample sizes (< 50), but these error rates
decreased significantly for the larger sample sizes
considered.

High Effect Sizes (0.6 and 0.8) at 0.1 Significance
Level:

At a 0.1 level of significance, McNemar’s test
exhibited low power for small sample sizes (< 20),
particularly at an effect size of 0.6. The power
increased sharply, approaching 100% as the
sample size increased. Liddell’s exact test,
however, consistently achieved 100% power
across nearly all sample sizes.

Moderate Effect Sizes (0.1, 0.2, 0.3, 0.4) at 0.1
Significance Level:

For moderate effect sizes at the 0.1 significance
level, Liddell's exact test demonstrated 100%
power across nearly all sample sizes. In contrast,
McNemar’s test showed low power for small
sample sizes (< 20), which increased rapidly,
approaching 100% with larger sample sizes.

No and Low Effect Sizes (0, 0.01, 0.02, 0.03) at
0.1 Significance Level:

At a 0.1 level of significance with no or low effect
sizes, McNemar’s test showed shallow Type I
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error rates for small sample sizes (< 20), which
increased as sample sizes grew. Meanwhile,
Liddell's exact test exhibited high Type I error
rates for small sample sizes, which decreased and
became less stable for larger sample sizes.

Conclusions

Based on the analysis conducted, several key
conclusions can be drawn. Firstly, the power of
both McNemar's and Liddell's exact tests is
significantly influenced by sample size. Both tests
exhibited improved performance with larger
sample sizes compared to smaller ones. The level
of significance also plays a critical role, as both
tests demonstrated greater power at higher
significance levels. Effect size is another critical
factor; both tests were more potent at moderate to
high effect sizes.

Furthermore, the preference between the two
tests depends on specific conditions. Liddell’s
exact test is generally more suitable when dealing
with large sample sizes and low effect sizes.
However, McNemar’s test may still be appropriate
for situations involving smaller sample sizes with
low effect sizes. Liddell's test is recommended
when the proportions are small and close,
especially when the sample size is large. Given
these findings, it is crucial to carefully choose the
appropriate  test based on the specific
characteristics of the data to achieve reliable
results.
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