Oxidative Stress-Induced Spermiotoxicity of Ciprofloxacin: An *In Vitro* Study

¹Osawe, S. O. and ²Oladokun, F. A.

¹Department of Biological Sciences, Biochemistry Unit, Benson Idahosa University, Benin City, Nigeria. ²Department of Science Laboratory Technology, Akwa Ibom State Polytechnic, Ikot Asurua, Nigeria

*Corresponding author: Sharon Oluchi Osawe sharon1osawe@gmail.com, sosawe@biu.edu.ng (https://orcid.org/0000-0002-5866-8041)

Abstract

Infertility can primarily result from oxidative stress induced by the use of various drugs including known antibiotics. This study investigated dose and time-dependent effect of Ciprofloxacin on antioxidant status, sperm motility, viability and morphological characteristics of semen from sexually mature boar. Semen was incubated with Ciprofloxacin at 5.4 μ g/ml, 54 μ g/ml and 540 μ g/ml for 4 hours at 37°C and sperm characteristics were monitored at 2-hour intervals. Antioxidant status was assessed after the incubation period by estimation of reduced glutathione levels, and activities of glutathione-S-transferase, glutathione peroxidase, superoxide dismutase and catalase. The extent of lipid peroxidation and hydrogen peroxide generation were also determined. Ciprofloxacin induced oxidative stress in boar semen in a dose-dependent manner with a significant increase (p < 0.05) in reduced glutathione levels, and activities of glutathione-S-transferase, glutathione peroxidase, and catalase as well as malondialdehyde and hydrogen peroxide levels when compared with the control. However, when compared with the control, there was a significant (p < 0.05) dose-dependent decline in the activity of SOD. Assessment of sperm characteristics revealed a decline in motility, 2 hours post-treatment with all doses of Ciprofloxacin which became significant in the 4th hour. Semen incubation with Ciprofloxacin also increased the number of abnormal sperm cells while decreasing viability in a time-dependent manner. Overall, these results show that Ciprofloxacin caused enhancement of free radicals and alterations in activities of antioxidant enzymes with a resultant deterioration in sperm motility, viability and morphology.

Keywords: Ciprofloxacin, oxidative stress, antioxidant status, semen, sperm.

1. Introduction

Ciprofloxacin (CPFX) is a 4-fluoro-quinolone antibiotic belonging to the second-generation fluoroquinolones with a broader antibacterial spectrum of activity [1]. Unlike many quinolones, its broad spectrum of activity against most strains of gram-negative and certain gram-positive bacteria, especially S. pneumonia, confers on it a drug of choice used by fertility specialists and urologists to treat infections of the urinary tracts and reproductive tissues [2 - 4]. Although a high level of regression in the infectious pathologies of the male reproductive tract has been achieved with the administration of ciprofloxacin, patients treated exhibited reduced sperm motility and viability and compromised sperm morphology, without improvement in sperm agglutination and leukocytospermia [5 - 6]. This observation is supported by results from experimental studies that demonstrated significant Leydig cell degeneration, reduced testis weight, testosterone, (luteinizing hormone) LH, (follicle stimulating hormone) FSH

and prolactin levels, and sperm quality in a dose and time-dependent manner [7 - 9].

The antibacterial mechanism of CPFX is based on the inhibition of the bacterial type II topoisomerase (DNA gyrase) and topoisomerase IV. This mechanism of action, attributed to its ability to acidify cell cytoplasm, may be related to mitochondrial damage thus impeding mitochondrial DNA replication [10]. CPFX has also been demonstrated to stimulate the production of reactive oxygen species (ROS) in bacterial cells as a core mechanism of action [11-13].

Several adverse effects reported with the use of CPFX includes its cross-reactivity with mammalian topoisomerase II [14], and cytotoxic effects of CPFX reveal that it inhibits the growth of various cultured mammalian cells [15-16]. Others include hepatotoxicity [17], nephrotoxicity [18], carcinogenicity, phototoxicity [16, 19], chondrotoxicity and tendinopathy, [20 - 21] e.t.c. Amongst other adverse effects reported, CPFX

impairs testicular and epididymal function and structure [20 - 21]. Besides this, the increase in ROS level during CPFX antibacterial action may contribute to its deleterious effects on testicular function [22]. It is thus becoming obvious that the toxic effects associated with CPFX may have a direct or indirect link with certain mechanisms associated with its bactericidal activity.

Following administration, high levels of this drug were detected in prostatic tissue and seminal fluid [23 - 25]. Decreased sperm count, motility, viability, DNA damage, chromatin morphological abnormalities of sperm cells as well as fertilization rates and embryonic development have also been reported with CPFX treatment [8, 9, 24, 26]. The concern about its toxic effect on male reproductive function has triggered more recent investigations which seek to unravel possible mechanisms underlying this challenge. Most of these aim at proffering possible modulatory or ameliorating approaches to addressing its toxicity while still harnessing its therapeutic benefits. Thus, this study seeks to verify this claim in a condition of CPFX-induced spermiotoxiciy in boar semen.

2. Materials and Methods

2.1. Chemicals

Ciprofloxacin injection USP (2 mg/ml in a bottle of 100 ml Ciprotab I.V) was purchased from Danax supermarket and pharmacy, Dugbe, Ibadan. Reduced glutathione, 5, 5' -dithio-bis-2-nitrobenzoic acid, thiobarbituric acid, 1-chloro-2,4-dinitrobenzene (CDNB) and epinephrine were purchased from Sigma Chemical Co. (St. Louis, MO, USA). All other chemicals used were of analytical grade and the purest quality available.

2.2. Incubation Medium (Tris-citric-fructose (TCF) extender)

Semen incubation medium consisted of Tris-(hydroxymethyl)-aminomethane (37.85 g/l), citric acid anhydrous (21.15 g/l) and D (-) fructose (10 g/l), pH 7.0. [27].

2.3. Animals and Semen Collection

Twelve testes were obtained from the scrotum of six freshly slaughtered sexually matured boars (6-18 months) at the abattoir market in Ibadan and were immediately transferred to the laboratory in a well-insulated flask maintained at 37°C. Animal handling was done in accordance with measures provided by the US National Academy of Science (NAS) published by the US National Institute of Health on the use and care of experimental approval of the veterinary animals. The consultant(s) committee of the Bodija abattoir on ethics and animal handling was also obtained. The right and left epididymides were trimmed off testes and semen was collected into the incubation medium as described by [28]. Briefly, semen was flushed into the incubation medium (kept at room temperature) with 2 - 3 drops of the same through a 1.0 cm incision made with a scalpel blade on the caudal epididymis. Prior to CPFX treatment, aliquots of spermatozoa from each epididymis were evaluated for concentration and motility under a light microscope. Percentage sperm motility (>70%) was chosen as normal and used in this study.

2.4. Ciprofloxacin Treatments

Three different concentrations of ciprofloxacin were used for this study: 5.4 µg/ml (physiologic concentration), 54 µg/ml (10 X physiologic concentration) and 540 µg/ml (pharmacologic concentration) [29]. **CPFX** at various concentrations were added to semen in an incubation medium at 37 °C (Table 1). All experiments were repeated five times under the same conditions and samples were incubated for 4 hours. Motility, viability and morphology characteristics were evaluated [30, 31] at 0, 2 and 4 hours. Afterwards, samples were centrifuged and the supernatant was used for antioxidant assay.

Table 1: In vitro Treatment of Boar Semen with CPFX

Treatments	Semen in TCF medium (ml)	Pure TCF medium (ml)	CPFX (ml)
Control	5	5	-
CPFX (5.4 µg/ml)	5	4.973	0.027
CPFX (54 µg/ml)	5	4.73	0.27
CPFX (540 μg/ml)	5	2.3	2.7

TCF medium = incubation medium, CPFX = ciprofloxacin, stock solution of CPFX= 2 mg/ml; total test tube volume = 10 ml; treatment (ml) in 10 ml total volume = C1V1 = C2V2

Website: koladaisiuniversity.edu.ng/kujas © KUJAS, Volume 1, 2023

Faculty of Applied Sciences

2.5. Sperm motility, Morphological Abnormalities and Percentage Viability Assay

Progressive sperm motility (rapid forward movement) was assessed by the method described by [30] and expressed as percentages. An aliquot of sperm suspension was smeared out on a clean glass slide with another slide and stained with Wells and Awa's stain (0.2 g of eosin and 0.6 g of fast green dissolved in distilled water and ethanol in the ratio 2:1) for morphological examination and 1% eosin B and 5% nigrosine in 3% sodium citrate dehydrate solution for determination of sperm live/dead ratio (viability) according to the method described by [31].

2.6. Biochemical Assays

At the end of the incubation period, spermatozoa suspensions in the TCF medium homogenized for 10 s and centrifuged at 2000 g for 10 min at 4 °C. The supernatant obtained was used to determine levels of reduced Glutathione (GSH) and the Lipid Peroxidation (LPO) product malondialdehyde [32 - 33]. Glutathione- Stransferase activity (GST) was assayed using the method of Habig et al. [34] while Glutathione Peroxidase activity (GPX) was determined by the method of Rotruck et al [35]. Superoxide Dismutase (SOD) and Catalase (CAT) activities were evaluated by the methods described by Misra and Fridovich [36] and Clairborne [37]. Hydrogen peroxide (H₂O₂) generation was quantified according to the method of Wolff [38].

2.7. Statistical Analysis

Data are mean \pm SD; Student's T-test was used to analyse data. p < 0.05 was of statistical significance.

3. Results and Discussion

Several *in vivo* and *in vitro* studies reported the adverse effect of CPFX on male reproductive function [7, 24, 39, 40]. The claims on its mechanism of toxicity are still being researched and confirmed as CPFX remains among the first-line choice of antibiotics used to treat a wide range of bacterial infections. This is because of its wide spectrum of activity, favourable pharmacokinetics and pharmacodynamics [41] as well as its availability and affordability. Our study is the first to report that CPFX significantly impairs sperm motility and viability *in vitro* by compensatory

elevations of endogenous antioxidants as a plausible response to increased ROS production. Although CPFX is used by urologists and fertility specialists particularly in in vitro fertilization (IVF) techniques and in treating infectionassociated infertility in males [3, 4], long exposure to this drug may defeat the intending aim. High concentrations of this drug could be sustained in semen following administration. It was reported by Wagenlehner and Naber [42] that the median seminal fluid concentration and the median ratio of seminal/plasma drug concentration of CPFX after 2-4 hours in volunteers were 6.57 mg/l and 7.70 mg/l respectively after an oral dose of 750 mg. Thus, ciprofloxacin is concentrated several-fold in ejaculate and seminal fluid and although sufficiently elevated to include the total spectrum of sensitive strains causing bacterial prostatitis, could be the reason for its detrimental effect on the testis and healthy sperm cells as shown in previous studies [4, 7, 22, 43] and supported by our study. CPFX concentration $\geq 5.4 \, \mu \text{g/ml}$ (physiologic concentration) significantly decreased percentage of motile sperms while percentage of viable sperm cells were significantly (p < 0.05) µg/ml (pharmacologic depleted at 540 concentration) at 4 hours (Figure 1). There was also a slight increase in the percentage of abnormal sperm cells at 0, 2 and 4 hours on exposure to ≥ 5.4 μg/ml CPFX.

The cytotoxicity of CPFX has been reported by some authors. This effect has been linked to its apoptotic-inducing potential and its ability to arrest cell cycle growth at the S phase. Changes in p53, Bcl-2 associated X protein (Bax) and B-cell lymphoma protein 2 (Bcl-2) expression in tested cell lines and in testicular tissues were reported following treatment with ciprofloxacin [16, 44, 46]. Growth inhibition of various cultured mammalian cells has also been reported with CPFX treatment. CPFX decreased cell viability in a dose- and time-dependent manner and at lower ciprofloxacin concentrations (0.01 mM 0.1 mM) cells were arrested in S-phase suggesting a mechanism related to topoisomerase II inhibition. MDA levels were also increased in treated cell lines suggestive of an oxidative stress generation mechanism associated with its cytotoxic potential. [15, 16]. The cytotoxic and apoptotic effect of CPFX in rat testis has also been reported [45, 46].

Website: koladaisiuniversity.edu.ng/kujas © KUJAS, Volume 1, 2023 Faculty of Applied Sciences We also report a significant (p < 0.05) dose and time-dependent increase in H_2O_2 and the lipid peroxidation product; MDA in boar semen exposed to CPFX, which must have elicited peroxidation of sperm membranes (Figure 2). This correlates with a significant decrease in SOD activity after 4hours of treatment with 54 $\mu g/ml$ and 540 $\mu g/ml$ of CPFX.

SOD belongs to the first line of endogenous antioxidant defences that are involved in the dismutation of superoxide anion (O₂-) to H₂O₂ which is reduced to water by catalase and the GPX. Thus any biological system generating O_2^- will without question incur H₂O₂ as a result of a spontaneous dismutation reaction. In addition, some enzymatic reactions may produce H₂O₂ directly [47]. O₂-itself can also react with H₂O₂ and generate the hydroxyl radical (OH⁻). On another hand, in a succession of reactions called Haber-Weiss and Fenton reactions, H₂O₂ can break down to the hydroxyl radical (OH-). OH-, the most reactive of ROS, can damage proteins, lipids, carbohydrates and DNA. It can also initiate lipid peroxidation by the abstraction of an electron from polyunsaturated fatty acids [48]. The depletion of SOD activity observed in our study implies it is being overwhelmed by an overincreased production of O_2 by CPFX and in its involvement in dismutating it to H₂O₂. On another hand, a decrease in sperm motility resulting from sperm mitochondria membrane damage and hence reduced adenosine triphosphate (ATP) production could be explained that the O₂- anion and H₂O₂ generated by CPFX possibly resulted in OH the generation that led to lipid peroxidation of sperm membrane with resultant elevations in MDA levels. CPFX has been reported to generate radical species such as ROS and reactive nitrogen species (RNS) in testicular tissue and seminal fluid as a mechanism underlying its reproductive toxicity in males [4, 8, 22, 49, 50]. In the study of Xie et al. [22], CPFX induced oxidative damage evidenced by a significant elevation in MDA and a significant decrease in SOD content. Adedara et al. [4] also diminished endogenous antioxidant defences (SOD, CAT, GST and GPX activities as well as GSH, levels) with increased reactive oxygen and nitrogen (RONS) and LPO levels in the hypothalamus, testis and epididymis of CPFX treated rats. These studies and several others also report a reduction in sperm characteristics (motility, count and viability) as well as increased morphological abnormalities in the rats evidenced by the adverse impact of oxidative stress on the reproductive function of CPFX-treated rats [8, 9, 43].

Furthermore, in most of these studies, administration of CPFX adversely compromised markers of testicular tissue integrity, sex hormones and induced the up-regulation of some inflammatory biomarkers. The mid-piece and tail segments of spermatozoa of rats and elevated abnormalities in sperm morphology were also reportedly affected by CPFX treatment. Oxidative damage to the sperm tail and mid-piece (which houses the sperm structural machineries and the mitochondria; producing cellular energy for sperm motility and function) may consequently diminish the quality and life of sperm cells culminating in decreased fertilization of the ovum by the sperm [4, 9, 43].

Microsomal metabolism of CPFX generates free radicals [41] which may interfere with sperm mitochondrial ATP generation and membrane integrity decreasing motility and vitality [51]. Thus the decrease in sperm motility observed in our study could be purported to result from mitochondrial ATP depletion in sperm associated with mitochondria membrane damage and the reduced sperm cell viability as a result of CPFX-induced cytotoxicity of the spermatozoa population.

In our study, significant elevations were observed in GSH levels, CAT, GPX and GST activities in boar semen after incubation with CPFX for 4 hours. This observation was dosedependent. Although most authors report diminished levels /activities of these antioxidants in a face of oxidative assault as in CPFX-induced tissue damage including testicular and sperm toxicity [4, 8, 17, 52], our results support similar observations in previous studies which report elevated antioxidant system activity in tissues (CAT in the liver and posterior kidney, GST in gills) of catfish Rhamdia quelen in short-term exposure to CPFX [53]. Also, CPFX alone and in combination with paracetamol, increased the levels of antioxidant enzymes and biomarkers of oxidative damage as well as altered the expression of Nuclear factor E2-related factor 1 and 2 (Nrf1 and 2), BAX, and Caspase 3, 6, 8, and 9 in the liver of the fish Danio rerio [54]. The result of our study indicates an adaptive response by the seminal antioxidant system in response to increased production of free radicals on exposure to CPFX [55].

Website: koladaisiuniversity.edu.ng/kujas © KUJAS, Volume 1, 2023 Faculty of Applied Sciences

In order to prevent oxidative/nitrosative stress, the cell must respond to ROS/RNS by mounting an antioxidant defence system. Therefore, redox regulation of transcription factors is significant in determining gene expression profile and cellular response to oxidative/nitrosative stress. Many hydrogen peroxide sensors and pathways are triggered by converging in the regulation of transcription factors including activator protein 1 (AP-1), Nrf2, antioxidant response elements (ARE), p53, Nuclear factor-kappa B (NF-κB) Notch (a membrane-bound transcription factor) e.t.c which induce the expression of a number of genes. Endogenous inducers including nitric oxide, hydrogen peroxide, lipid peroxidation products such as 4- hydroxyl nonenal (4HNE) and MDA, etc can react with specific cysteine residues in Keap1, leading to the release of Nrf2 and allowing its nuclear translocation, binding to the ARE and activating the expression of a battery cytoprotective genes (antioxidant and detoxification genes). These ROS can also induce the transcription factors AP-1 and NF-kB with target genes mainly enzymes involved in the antioxidant response such as NAD(P) H:quinone oxidoreductase 1 (NQO1), glutathione S-transferases, ferritin heavy chain and SOD, etc [55]. Thus the increase in endogenous antioxidant activities (CAT, GPX and GST) and levels (GSH) observed in our study could probably be an initial adaptive response by the antioxidant defence system in an attempt to assuage CPFX-induced oxidative stress. This could possibly be by activation of transcription factors that trigger the expression of enzymatic detoxification and antioxidant genes and hence cellular enzymes as seen in previous studies with CPFX [53, 54].

4. Conclusion

CPFX has the potential to induce detrimental effects on sperm in a dose and time-dependent manner. This study shows that CPFX elicited increased ROS in semen which elevated intracellular antioxidant defenses as an initial adaptive response in an attempt to combat induced oxidative stress. Thus, it comes close that CPFX is able to induce its pathological effect even at physiological doses with prolonged usage.

References

- [1] Ezelarab HAA, Abbas SH, Hassan HA, Abuo-Rahma GEDA. "Recent updates of fluoroquinolones as antibacterial agents." *Archiv der Pharmazie* 351, 9, (2018): 1800141.
- [2] Chua KJ, Li G, Cooper KL, Hyams ES. Urologists use fluoroquinolones more frequently in USA states with high resistance. *International Journal of Urology: Official Journal of the Japanese Urological Association*, 26, 3, (2019): 433-434.
- [3] Nickel JC, Doiron RC. Dangerous fluoroquinolones: The urologist's dilemma. Canadian Urological Association Journal, 14, 4, (2020): 85.
- [4] Adedara IA, Awogbindin IO, Mohammed KA, Da-Silva OF, Farombi, E. O. Abatement of the dysfunctional hypothalamic–pituitary–gonadal axis due to ciprofloxacin administration by selenium in male rats. *Journal of Biochemical and Molecular Toxicology*, 35, 5, (2021): e22741.
- [5] Ryan L, Daly P, Cullen I, Doyle M. Epididymo-orchitis caused by enteric organisms in men> 35 years old: beyond fluoroquinolones. European Journal of Clinical Microbiology & Infectious Diseases, 37, (2018): 1001-1008.
- [6] Carranza-Lira, S, Tserotas K, Morán C, Merino G, Barahona E, Bermúdez, J. A. Effect of antibiotic therapy in asthenozoospermic men associated with increased agglutination and minimal leukospermia. *Archives of Andrology*, 40, 2, (1998): 159-162.
- [7] Khaki A. Assessment on the adverse effects of Aminoglycosides and Flouroquinolone on sperm parameters and male reproductive tissue: A systematic review. *Iranian Journal of Reproductive Medicine*, 13, 3, (2015):125.
- [8] Osawe SO, Farombi EO. Ethanol extract of *Moringa oleifera* leaves modulates Ciprofloxacin-induced oxidant stress in testis and semen of rats. *Archives of Basic and Applied Medicine*, 1, 1, (2013): 59-66.
- [9] Kheirandish R, Emadi L, Akhtardanesh B, Azizi S, Imani M, Mahmoodabadi F, Irani F, Shokrizadeh H. Effects of ciprofloxacin on testicular tissue and sperm quality in rabbits. *Asian Pacific Journal of Reproduction*, 9, 2, (2020): 83.

- [10] Koltai TOMAS. "Is ciprofloxacin an anticancer drug? A minireview." Work. Pap. (2016), 10.13140/RG.2.1.3255.1920
- [11] Hong Y, Li Q, Gao Q, Xie J, Huang H, Drlica K, Zhao X. Reactive oxygen species play a dominant role in all pathways of rapid quinolone-mediated killing. *Journal of Antimicrobial Chemotherapy*, 75, 3, (2020): 576-585.
- [12] Marciniec K, Beberok A, Pęcak P, Boryczka S, Wrześniok D. Ciprofloxacin and moxifloxacin could interact with SARS-CoV-2 protease: preliminary in silico analysis. *Pharmacological Reports*, 72, 6, (2020): 1553-1561.
- [13] Drlica K, Zhao X. Bacterial death from treatment with fluoroquinolones and other lethal stressors. *Expert Review of Anti-infective Therapy*, *19*, 5, (2021): 601-618.
- [14] Jadhav AK, Karuppayil SM. Molecular docking studies on thirteen fluoroquinolines with human topoisomerase II a and b. *In Silico Pharmacology*, *5*, 4, (2017): 1-12.
- [15] Zandi A, Moini Zanjani T, Ziai SA, Khazaei Poul Y, Haji Molla Hoseini, M. Evaluation of the cytotoxic effects of ciprofloxacin on human glioblastoma A-172 cell line. *Middle East Journal of Cancer*, 8, 3, (2017): 119-126.
- [16] Beberok A, Wrześniok D, Rzepka Z, Respondek M, Buszman E. Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway. *International Journal of Oncology*, 52, 5, (2018): 1727-1737.
- [17] Hemieda FA, El-Kholy WM, Masud ASA. Evaluating the protective impact of ginger extract against ciprofloxacin-induced hepatotoxicity in male albino rats. *IOSR Journal of Pharmacy and Biological Sciences*, 14, 1, (2019): 23-30.
- [18] Hajji M, Jebali H, Mrad A, Blel Y, Brahmi N, Kheder R, Beji S, Fatma LB, Smaoui W, Krid M, Hmida FB, Rais L, Zouaghi, M. K. Nephrotoxicity of ciprofloxacin: five cases and a review of the literature. *Drug Safety-Case Reports*, 5, 17, (2018): 1-5.
- [19] Gull HH, Karadag C, Senger B, Sorg RV, Möller P, Mellert K, Steiger HJ, Hänggi D, Ciprofloxacin Cornelius JF. enhances phototoxicity of 5-aminolevulinic acid mediated photodynamic treatment for chordoma cell lines. Photodiagnosis Photodynamic Therapy, 35, (2021): 102346.

- [20] Adikwu E, Brambaifa N, Adikwu E. Ciprofloxacin induced chondrotoxicity and tendinopathy. *Am J Pharmacol Toxicol*, 7, 3, (2012): 94-100.
- [21] Khaleel AK, Shaari RB, Nawi MAA, Al-Yassiri, A. M. Assessment of the protective effect of green tea extract against ciprofloxacin-induced chondrotoxicity albino rats (histochemical, and immunohistochemical study). Archives of Medical Science-Civilization Diseases, 6, 1, (2021): 68-74.
- [22] Xie C, Bian Y, Feng H, Zhao Y, Wang L, Li Y, Zhang D, Tian Y, Li L, Chang S, Li H, Lv P. Reversal of ciprofloxacin-induced testosterone reduction by probiotic microbes in mouse testes. *General and Comparative Endocrinology*, 284, (2019): 113268.
- [23] Vartan S. Effect of ciprofloxacin on semen analysis in human healthy volunteers. *Basrah Journal of Surgery*, 9, 2, (2003): 175-178.
- [24] Zobeiri F, Sadrkhanlou RA, Salami S, Mardani K. Long-term effect of ciprofloxacin on testicular tissue: Evidence for biochemical and histochemical changes. *International Journal of Fertility & Sterility*, 6, 4, (2013): 294.
- [25] Xiong S, Liu X, Deng W, Zhou Z, Li Y, Tu Y, Chen L, Wang B, Fu B. Pharmacological interventions for bacterial prostatitis. *Frontiers in Pharmacology*, *11*, (2020): 504.
- [26] Gazi Z. Teratogenic effect of ciprofloxacin in albino rats. *AlQalam Journal of Medical and Applied Sciences*, 4, 2, (2021): 114-125.
- [27] Roca J, Martinez S, Vázquez JM, Lucas X, Parrilla I, Martinez EA. Viability and fertility of rabbit spermatozoa diluted in Tris-buffer extenders and stored at 15 C. *Animal Reproduction Science*, 64, 1-2, (2000): 103-112.
- [28] Olugbenga OM, Oniovosa U, Oyeyemi M, Ubiogoro O. Spermiogram and morphological characteristics in testicular and epididymal spermatozoa of Large White Boar in Nigeria. *International Journal of Morphology*, 23, 3, (2005): 235-239.
- [29] Kelly PA, Burckart GJ, Anderson D, Shapiro R, Zeevi, A. Ciprofloxacin does not block the antiproliferative effect of tacrolimus. *Transplantation*, 63, 1, (1997): 172-173.
- [30] Zemjanis R. Collection and evaluation of semen, in: R. Zemjanis (Ed.), *Diagnostic and therapeutic technique in animal reproduction*,

- second ed., William and Wilkins company, Waverly Press, Inc., Baltimore, Maryland, USA. (1970): 139e153.
- [31] Wells ME, Awa OA. New technique for assessing acrosomal characteristics spermatozoa. Journal of Dairy Science, 53, 2, (1970): 227-232.
- [32] Jollow D, Thorgeirsson SS, Potter WZ, Hashimoto M, Mitchell JR. Acetaminopheninduced hepatic necrosis. Pharmacology, 12, 4-5, (1974): 251-271.
- [33] Farombi EO, Tahnteng, JG, Agboola AO, Nwankwo JO, Emerole GO. Chemoprevention 2-acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron – A Garcinia kola seed extract. Food and Chemical Toxicology, 38,6, (2000): 535-
- [34] Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. Journal Biological Chemistry, 249, 22, (1974): 7130-
- [35] Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman, DG, Hoekstra W. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179, 4073, (1973): 588-590.
- [36] Misra HP, Fridovich, I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, (1972): 3170-3175.
- [37] Clairborne A. Catalase activity. In: Greewald AR, ed. Handbook of methods for oxygen radical research. Boca Raton, FL: CRC Press; (1995): 237-242.
- [38] Wolff SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. In *Methods* in enzymology. Academic Press. 233, (1994): 182-189.
- [39] Tímermans A, Vázquez R, Otero F, Gosálvez, J, Johnston S, Fernández JL. Antibiotic toxicity on human spermatozoa assessed using the **DNA** fragmentation dvnamic sperm assay. Andrologia, 54, 2, (2022): e14328.
- [40] Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. Ciprofloxacin and enrofloxacin can cause reproductive toxicity via endocrine signaling pathways. Ecotoxicology and Environmental Safety, 244, (2022): 114049.

- [41] Badawy S, Yang Y, Liu Y, Marawan MA, Ares I, Martinez MA, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez M. Toxicity induced by ciprofloxacin and enrofloxacin: Oxidative stress and metabolism. Critical Reviews in Toxicology, 51, 9, (2021): 754-87.
- [42] Wagenlehner FME, Naber KG. Current challenges in the treatment of complicated urinary tract infections and prostatitis. Clinical Microbiology and Infection, 12, (2006): 67-80.
- [43] Mokhimar HM, Kandiel MM, Amin AA, Elsawah HK, E1Mahmoudy Ciprofloxacin and levofloxacin adversely affect male infertility indicated by pharmacological, andrological and pathological evidence. International Journal of Basic & Clinical Pharmacology, 9, 2, (2020): 353.
- [44] Kloskowski T, Szeliski K, Fekner Z, Rasmus M, Dabrowski P, Wolska A, Siedlecka N, Adamowicz J, Drewa T, Pokrywczyńska M. Ciprofloxacin and levofloxacin as potential drugs in genitourinary cancer treatment—the effect of dose-response on 2D and 3D cell cultures. International Journal of Molecular Sciences, 22, 21, (2021): 11970.
- [45] Khaki A. Assessment on the adverse effects of Aminoglycosides and Flouroquinolone on sperm parameters and male reproductive tissue: A systematic review. Iranian Journal of Reproductive Medicine, 13, 3, (2015): 125.
- [46] Khaki A, Heydari M, Ghafari NM, Khaki AA. Adverse effects of ciprofloxacin on testis apoptosis and sperm parameters in rats. *Iranian* Journal of Reproductive Medicine, 6, 2, (2008): 72-76.
- [47] Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15, 1, (2015): 1-22.
- [48] Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) induced pathologies. International Journal of Molecular Sciences, 22, 9, (2021): 4642.
- [49] Nashwa A, Kawkab AA, Mouneir S. The protective effect of ginger and N-acetyl ciprofloxacin-induced cysteine on reproductive toxicity in male rats. Journal of American Science, 7, 7, (2011): 741-52.

- [50] Talla V, Veerareddy PR. Oxidative stress induced by fluoroquinolones on treatment for complicated urinary tract infections in Indian patients. *Journal of Young Pharmacists*, *3*, 4, (2011): 304-309.
- [51] Singh VJ, Sharma S. Effect of antibiotic therapy on sperm quality. *European Journal of Molecular & Clinical Medicine*, 7, (2020): 4398-4403.
- [52] Igbayilola YD, Saka WA, Aina SO, Mofolorunso AM, Oyabambi AO, Morakinyo AO. Adverse effect of graded Ciprofloxacin oral intake in male Sprague-Dawley rats. *Journal of African Association of Physiological Sciences*, 8, 1, (2020): 62-70.
- [53] Kitamura RSA, Vicentini M, Perussolo MC, Lirola JR, Dos Santos CFC, Brito JCM, Cestari MM, Prodocimo MM, Gomes MP, de Assis HCS. Sublethal biochemical, histopathological and genotoxicological effects of short-term exposure to ciprofloxacin in catfish *Rhamdia* quelen. Environmental Pollution, 300, (2022): 118935.
- [54] Elizalde-Velázquez GA, Rosas-Ramírez JR., Raldua D, García-Medina S, Orozco-Hernández JM. Rosales-Pérez K. Islas-Flores H, Galar-Martínez M, Guzmán-García X, Gómez-Oliván LM. Low concentrations of ciprofloxacin alone and in combination with paracetamol induce oxidative stress. upregulation of apoptotic-related histological alterations in the liver, and genotoxicity in Danio rerio. Chemosphere, 294, (2022): 133667.

[55] Maciejczyk M, Żebrowska E, Zalewska A, Chabowski A. Redox balance, antioxidant defense, and oxidative damage in the hypothalamus and cerebral cortex of rats with high fat diet-induced insulin resistance. Oxidative Medicine and Cellular Longevity, 2018, (2018): 6940515.

Abbreviations:

CPFX – Ciprofloxacin

CAS - Caspase

DNA – Deoxyribonucleic acid

AP-1 – Activator Protein 1

NQO1 - NAD(P)H:quinone oxidoreductase 1

MDA – Malondialdehyde

GSH - Reduced glutathione

SOD – Superoxide dismutase

O₂ - Superoxide anion

OH - Hydroxyl radical

CAT - Catalase

H₂O₂ – Hydrogen Peroxide

GPX – Glutathione peroxidase

Nrf1- Nuclear factor E2-related factor 1

Nrf2 – Nuclear factor E2-related factor 2

ARE – Antioxidant response elements

NF-κB – Nuclear factor-kappa B

Bcl-2 – B-cell lymphoma protein 2

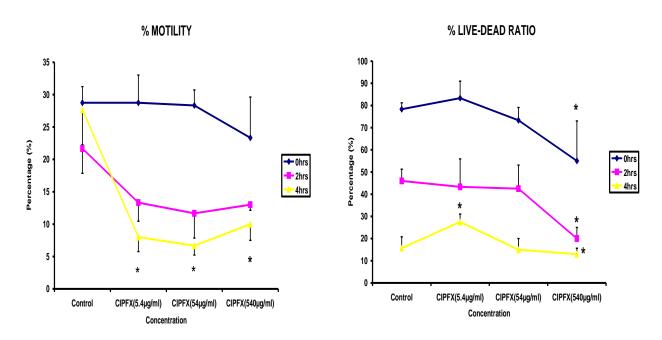
Bax – Bcl-2 Associated X protein

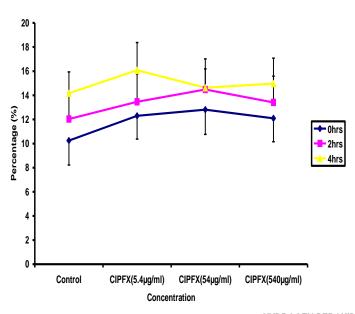
ROS – Reactive oxygen species

Keap1 Kelch-like ECH-associated protein 1

LH – Luteinizing hormone

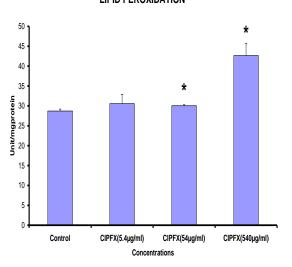
FSH – Follicle stimulating hormone

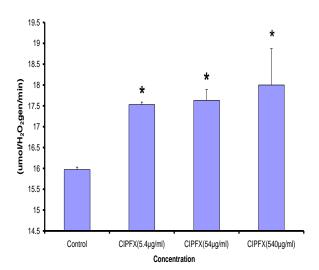

Table

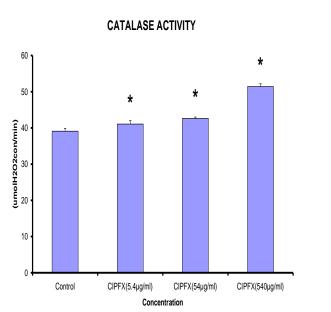

Table 2: Effect of CPFX Treatments on GSH, GST and GPX Levels in Boar Semen

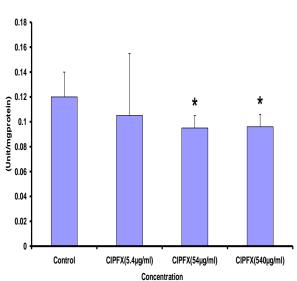
TREATMENTS	GSH (µg/mgprotein)	GST (µmol/min/mgprotein)	GPX (umol/min/mgprotein)
Control	5.90 ± 0.34	15.53 ± 0.39	12.98 ± 0.24
CPFX (5.4µg/ml)	6.50 ± 0.37 *	21.79 ± 1.02*	13.30 ± 0.20
CPFX (54μg/ml)	6.86 ± 0.17 *	27.77 ± 0.55*	13.52 ± 0.46 *
CPFX (540μg/ml)	7.45 ± 1.74	35.31 ± 1.40*	16.89 ± 0.40 *

Values are mean \pm SD, *P < 0.05 compared with control, n = 6, CPFX = Ciprofloxacin


Figures




LIPID PEROXIDATION


HYDROGEN PEROXIDE GENERATION

Website: koladaisiuniversity.edu.ng/kujas © KUJAS, Volume 1, 2023 Faculty of Applied Sciences

SUPEROXIDE DISMUTASE ACTIVITY

Figure Legends

Figure 1: Changes in sperm percentage (%) motility, live-dead ratio and total abnormality of boar semen at 0, 2 and 4hrs of incubation with various concentrations of CPFX. Values are mean \pm SD, *P < 0.05 compared with control, n = 6, CPFX = Ciprofloxacin

Figure 2: Increased LPO, H₂O₂ levels and changes in the activities of CAT and SOD in boar semen after 4hrs incubation with various concentrations of CPFX. Values are mean \pm SD, *P < 0.05 compared with control, n = 6, CPFX = Ciprofloxacin