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Abstract 
This study examined how a Winkler foundation influences the dynamic analysis of an Euler-Bernoulli beam placed 
on an elastic foundation by employing an Integral-Numerical method, which simplifies to an ordinary differential 
equation using a series representation of the Heaviside function. The dynamic responses of the beam, including 
normalized deflection and bending moment, were analyzed for various velocity ratios under conditions of moving 
loads and moving masses. In general, a closed-form solution for the generalized mathematical model of a prismatic 
beam was derived using a symbolic programming technique with MAPLE 18. The findings indicated that the inclusion 
of an elastic foundation along with adequate reinforcement in beams and beam-like structures decreases vibration 
intensity, ensures safe load passage, and extends the lifespan of the beam. 
 
Keywords: Axial force, elastic foundation, foundation stiffness, integral-numerical method, moving load. 
 
 
Introduction 
A beam serves as a crucial structural component, 
serving as a basic and precise framework to 
evaluate complex engineering structures like 
turbine and compressor blades, aircraft wings, 
robotic arms, spacecraft antennas, building 
frameworks, bridges, and vibrating drills similar to 
a beam. For over a century, researchers have been 
interested in the vibration analysis of bridge 
structures that experience loads or moving masses. 
This topic gained attention in civil engineering for 
constructing railways and bridges, as well as in 
mechanical engineering for crane trolleys that 
operate on their beams, along with machining 
applications. The challenge arises from the 
realization that bridges subjected to the impact of 
moving vehicles or trains can experience internal 
dynamic deflections and stress that are 
substantially higher than those caused by static 
loads. The examination of the dynamic response of 
structures like beams and slabs under moving 
loads has captured the interest of many scholars in 
engineering, applied physics, and applied 
mathematics. In this scenario of moving load 
problems, the mass of the load plays a significant 
role since its position shifts continuously. 
Considerable research has focused on this category 
of dynamic issues when the structural elements 
have consistent cross-sections. 

The method was founded on the generalized 
Galerkin's technique and integral transformations, 
with the assumption of a beam featuring a uniform 
cross-section. In all instances, the focus has been 
on uniform beams, with non-uniform beams 
addressed only under classical boundary 
conditions. Additionally, the work of Oni and 
Awodola (2011) explored the response of simply 
supported rectangular plates that carry moving 
masses while resting on variable Winkler elastic 
foundations. For solving these equations, a 
modification of Struble's technique along with the 
method of integral transformations was utilized. 
The set of ordinary differential equations was then 
simplified and resolved using a modified 
asymptotic staircase method. Although this study 
is significant, it is restricted to a beam with 
conventional termination conditions that are 
simply supported. Other research related to 
heterogeneous beams includes contributions from 
Omolofe (2012) and Oni and Ogunyebi (2018). 
Abdelghany et al. (2015) examined the effects of 
variations in traveling velocity and the influence of 
increasing the magnitude of the moving load on the 
dynamic response of a non-uniform Euler-
Bernoulli simply supported beam by employing 
the Galerkin and Runge-Kutta methods. It is 
important to note that the majority of 
investigations in this field have focused solely on 
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classical boundary conditions. Usman (2019) 
studied the series solution for an Euler-Bernoulli 
beam subjected to a concentrated load. The 
findings indicated that as the mass increases, the 
deflection also rises; conversely, as the mass of the 
beam decreases, the deflection increases as well. 
Adedowole et al. (2023) conducted a critical 
evaluation of a non-Winkler Timoshenko Beam, 
which included rotary inertial correction and was 
subjected to paired loads on subgrade. They 
employed a robust method of Galerkin and integral 
transforms to derive analytical procedures for the 
governing equation of motion. The analysis of the 
vibrating system's solutions was conducted, and 
various results were presented in the form of 
plotted curves. 

In many practical situations, it is often more 
feasible to utilize non-classical boundary 
conditions since ideal boundary conditions are 
seldom achieved. The issue of bridge-vehicle 
interaction is a prevalent challenge in the analysis 
of moving loads and constitutes a significant area 
of research. If the speed of a vehicle is 
considerably low, it cannot be classified as a 
moving load scenario because it behaves like a 
static load condition at such low speeds. In this 
case, traditional methods can effectively address 
the problem. Through mathematical analysis and 
calculations, these issues can be resolved. 
Structural vibrations can arise from vehicle 
movements, earthquakes, river currents, and wind. 
For safety considerations in design, various factors 
must be taken into account, including the mass of 
the body and the moving structure, as well as the 

inertia resulting from the moving mass of the 
structure due to eccentric loading. 
 
Bridges are typically categorized into four main 
types:  
 

(i) beam bridges,  
(ii) arch bridges,  
(iii) suspension bridges, and  
(iv) cantilever bridges.  

 
The primary distinction among these four types of 
bridges lies in the lengths they can span in a single 
span. A span refers to the distance between two 
supporting bridge pillars. Modern girder bridges 
are capable of spanning distances up to 60 meters, 
while modern arch bridges can safely manage 
spans of up to 240 meters. Suspension bridges 
represent the height of engineering capability, 
being able to reach spans of up to 2,100 meters. 
The remarkable ability of an arch bridge to span 
seven times longer than a beam bridge or seven 
times more than a suspension bridge is attributed 
to the way each bridge type manages forces of 
compression and tension. 
 
Mathematical Formulation 
Examine a non-uniform Euler-Bernoulli beam of 
length L situated on a Winkler foundation, which 
is subjected to a partially distributed uniformly 
moving load. The oscillatory dynamics of this 
system are characterized by the following partial 
differential equation.

 

  
Fig. 1: Beams supported by the Pasternak foundation experience moving loads. 

Source: scholarsmine.mst.edu 
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EILxxxx(x, t) + mLtt(x, t) + cLt(x, t) − k1Lxx(x, t) = P(x, t) − Q(x, t)                                      (1) 
 
Of which  
 L(x, t) is the displacement of the beam 
 
𝑥 is the spatial coordinate measured along the length of the beam in m (metre) 
 
𝑡 is the time in seconds 
 
𝐸𝐼 is the bending stiffness of the beam in  𝑁𝑚2 
 
𝑚 is the linear mass of the beam in 𝐾𝑔𝑚−1 
 
𝑐 is the linear viscous damping coefficient of the beam in 𝑁𝑠𝑚−2 
 
𝑘1 is the flux beam shear number in 𝑃𝑎 
 
𝑃(𝑥, 𝑡) are the applied external load per unit length in𝑁𝑚−1 , respectively 
 
For the Winkler model, Q(x, t) = kL(x, t), where 𝑘 is the elastic  constant of the foundation per unit length 
(𝑁/𝑚2).  
 
The equation above, can be written as 
 
When the external load 𝑃(𝑥, 𝑡) is a concentrated load moving at a constant speed 𝑣, defined as  
 
                         P(x, t) = ρδ(x − vt)                                                       (2) 
 
 
 
Convective acceleration operator Ltt is given as: 
𝑑2

𝑑𝑡2 = 𝐿𝑡𝑡(𝑥, 𝑡) + 2𝑣𝐿𝑡𝑥(𝑥, 𝑡) + 𝑣2𝐿𝑥𝑥(𝑥, 𝑡)              (3) 

 
For simply supported beams has finite length𝐿, the possible condition boundary is described 
Mathematically, 
  

L(0,t) = L(L,t) = 0         (4) 
 

𝐿′(0, 𝑡) = 𝐿′′(𝐿, 𝑡) = 0         (5) 
 
                                                       
At the beginning, the beam that is being supported is assumed to be stationary. Consequently, the initial 
boundary conditions are as follows: 
 
              L(x, 0) = Ltt(x, 0) = 0                                                         (6) 
 
Method of Solution 
 
𝐸𝐼𝐿𝑥𝑥𝑥𝑥(𝑥, 𝑡) + 𝑚𝐿𝑡𝑡(𝑥, 𝑡) + 𝑐𝐿𝑡(𝑥, 𝑡) − 𝑘1𝐿𝑥𝑥(𝑥, 𝑡) + 𝑘𝐿(𝑥, 𝑡) = 𝜌𝛿(𝑥 − 𝑣𝑡)        (7) 
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𝐿𝑥𝑥𝑥𝑥(𝑥, 𝑡) = ∑ 𝑋𝑛
𝑖𝑣∞

𝑛=1 (𝑥)𝑇𝑛(𝑡)                                                           (8) 
 

𝐿𝑥𝑥(𝑥, 𝑡) = ∑ 𝑋𝑛
11∞

𝑛=1 (𝑥)𝑇𝑛(𝑡)                                                              (9) 
 

𝐿(𝑥, 𝑡) = ∑ 𝑋𝑛
∞
𝑛=1 (𝑥)𝑇𝑛(𝑡)                                                                   (10) 

 

𝐿𝑡𝑡(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)𝑇
..

𝑛(𝑡)∞
𝑛=1                                                                  (11) 

 

𝐿𝑡(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)𝑇
.

𝑛(𝑡)∞
𝑛=1                                                                      (12) 

 

𝐸𝐼 ∑ 𝑋𝑛
𝑖𝑣∞

𝑛=1 (𝑥)𝑇𝑛(𝑡) + 𝑚 ∑ 𝑋𝑛
∞
𝑛=1 (𝑥)𝑇

..

𝑛(𝑡) + 𝑐 ∑ 𝑋𝑛
∞
𝑛=1 (𝑥)𝑇

.

𝑛(𝑡) −               

𝑘1 ∑ 𝑋𝑛
11∞

𝑛=1 (𝑥)𝑇𝑛(𝑡) + 𝑘 ∑ 𝑋𝑛
∞
𝑛=1 (𝑥)𝑇𝑛(𝑡) = 𝜌𝛿(𝑥 − 𝑣𝑡)                                         (13) 

 
For free vibration 

      ∑ 𝑋𝑛
iv(𝑥)𝑇𝑛(𝑡) = 𝜇𝜔𝑛

2𝑋𝑛(𝑥)𝑇𝑛(𝑡)∞
𝑛=1                (14)                                                                                                    

   

𝐸𝐼𝜇𝜔𝑛
2𝑋𝑛(𝑥)𝑇𝑛(𝑡) + 𝑚 ∑ 𝑋𝑛

∞
𝑛=1 (𝑥)𝑇

..

𝑛(𝑡) + 𝑐 ∑ 𝑋𝑛
∞
𝑛=1 (𝑥)𝑇

.

𝑛(𝑡)    
−𝑘1 ∑ 𝑋𝑛

11∞
𝑛=1 (𝑥)𝑇𝑛(𝑡) + 𝑘 ∑ 𝑋𝑛(𝑥)𝑇𝑛(𝑡) =∞

𝑛=1 𝜌𝛿(𝑥 − 𝑣𝑡)          (15) 
 
Integrating over the entire length of the beam and applying the orthogonal property (15), to give 
 

∫ 𝐸
𝑎𝛼

0

𝐼𝜇𝜔𝑛
2𝑋𝑛(𝑥)𝑇𝑛(𝑡)𝑑𝑥 + 𝑚 ∫ ∑ 𝑋𝑛

∞

𝑛=1

𝑎𝛼

0

(𝑥)𝑇
..

𝑛(𝑡)𝑑𝑥 + 𝑐 ∫ ∑ 𝑋𝑛

∞

𝑛=1

𝑎𝛼

0

(𝑥)𝑇
.

𝑛(𝑡)𝑑𝑥 

−𝑘1 ∫ ∑ 𝑋𝑛
11(𝑥)𝑇𝑛(𝑡)𝑑𝑥 +∞

𝑛=1
𝑎𝛼

0
𝑘 ∫ ∑ 𝑋𝑛

∞
𝑛=1

𝑎𝛼

0
(𝑥)𝑇𝑛(𝑡)𝑑𝑥 = ∫ 𝜌

𝑎𝛼

0
𝛿(𝑥 − 𝑣𝑡)𝑑𝑥                   (16) 

 
Multiply both sides of equation (16) by 𝑋𝑘(𝑥) 

∫ 𝐸
𝑎𝛼

0
𝐼𝜇𝜔𝑛

2𝑋𝑛(𝑥)𝑋𝑘(𝑥)𝑇𝑛(𝑡)𝑑𝑥 + 𝑚 ∫ ∑ 𝑋𝑛
∞
𝑛=1

𝑎𝛼

0
(𝑥)𝑋𝑘(𝑥)𝑇

..

𝑛(𝑡)𝑑𝑥     

+𝑐 ∫ ∑ 𝑋𝑛
∞
𝑛=1

𝑎𝛼

0
(𝑥)𝑋𝑘(𝑥)𝑇

.

𝑛(𝑡)𝑑𝑥 − 𝑘1 ∫ ∑ 𝑋𝑛
11∞

𝑛=1
𝑎𝛼

0
(𝑥)𝑋𝑘(𝑥)𝑇𝑛(𝑡)𝑑𝑥   

+𝑘 ∫ ∑ 𝑋𝑛
∞
𝑛=1

𝑎𝛼

0
(𝑥)𝑋𝑘(𝑥)𝑇𝑛(𝑡)𝑑𝑥 = ∫ 𝜌

𝑎𝛼

0
𝛿(𝑥 − 𝑣𝑡)𝑋𝑘(𝑥)𝑑𝑥                                    (17) 

 
But 

∫ 𝑋𝑛
𝑎𝛼

0
(𝑥)𝑋𝑘(𝑥)𝑑𝑥 = 1 {

0, 𝑛 ≠ 𝑘
1, 𝑛 = 𝑘 = 1

                                           (18) 

to obtain 

𝐸𝐼𝜇𝜔𝑛
2𝑇𝑛(𝑡) + 𝑚𝑇

..

𝑛(𝑡) + 𝑐𝑇
.

𝑛(𝑡) − 𝑘1 ∫ ∑ 𝑋𝑛
11

∞

𝑛=1

𝑎𝛼

0

(𝑥)𝑋𝑘(𝑥)𝑇𝑛(𝑡)𝑑𝑥 

+𝑘𝑇𝑛(𝑡) = ∫ 𝜌
𝑎𝛼

0
𝛿(𝑥 − 𝑣𝑡)𝑋𝑘(𝑥)𝑑𝑥                                                                          (19) 

 
Let 

              𝑋𝑛(𝑥) = sin
𝑛𝜋𝑥

𝑎𝛼
                                                                                              (20) 

               𝑋𝑛
′ (𝑥) =

𝑛𝜋

𝑎𝛼
cos

𝑛𝜋𝑥

𝑎𝛼
                                                                                         (21) 
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               𝑋𝑛
′′(𝑥) = (−)

𝑛2𝜋2

𝑎𝛼
2 sin

𝑛𝜋𝑥

𝑎𝛼
                                                                                (22) 

 

               𝑋𝑘(𝑥) = sin
𝑘𝜋𝑥

𝑎𝛼
                                                                                                (23) 

 
Substituting equation (20)-(23) into equation (19), to obtain 
 

                 𝐸𝐼𝜇𝜔𝑛
2𝑇𝑛(𝑡) + 𝑚𝑇

..

𝑛(𝑡) + 𝑐𝑇
.

𝑛(𝑡) + 𝑘1 ∫
𝑛2𝜋2

𝑎𝛼
2

𝑎𝛼

0

sin
𝑛𝜋𝑥

𝑎𝛼
sin

𝑘𝜋𝑥

𝑎𝛼
𝑇𝑛(𝑡)𝑑𝑥 

                      +𝑘𝑇𝑛(𝑡) = ∫ 𝜌
𝑎𝛼

0

𝛿(𝑥 − 𝑣𝑡)sin
𝑘𝜋𝑥

𝑎𝛼
𝑑𝑥                                                                            (24) 

 
Collect the like term in (24), one obtain 

𝑚𝑇
..

𝑛(𝑡) + 𝑐𝑇
.

𝑛(𝑡) + 𝐸𝐼𝜇𝜔𝑛
2𝑇𝑛(𝑡) + 𝑘𝑇𝑛(𝑡) + 𝑘1 ∫

𝑛2𝜋2

𝑎𝛼

𝑎𝛼

0

sin
𝑛𝜋𝑥

𝑎𝛼
sin

𝑘𝜋𝑥

𝑎𝛼
𝑇𝑛(𝑡)𝑑𝑥 

                       = ∫ 𝜌
𝑎𝛼

0

𝛿(𝑥 − 𝑣𝑡)sin
𝑘𝜋𝑥

𝑎𝛼
𝑑𝑥                                                                                          (25) 

 
Result and Discussions 
The equation governing the motion of the beam is 
a non-homogeneous partial differential equation of 
fourth order that has varying coefficients and 
heterogeneity. The dynamic beam problem's 
solution is derived using an integral numerical 
method, which reflects the displacement response 
of the beam. Consequently, a numerical 
representation of the findings from this analysis is 
provided. The graphs indicate that as the axial 

force values of the fixed foundation increase, the 
deflection magnitude correspondingly decreases, 
particularly for the foundation's stiffness. 
Furthermore, for varying fixed axial force values 
associated with foundation stiffness, the horizontal 
deflection of the beam diminishes as the 
foundation stiffness increases. Thus, heightened 
foundation stiffness ensures enhanced stability and 
reliability in the structural design.

 
 

Table 1: Deflection against Time(s) at 𝑬 = 𝟓, 𝑬 = 𝟏𝟎, 𝑬 = 𝟏𝟓 
 
TIME(s) 𝑬 = 𝟓𝑵𝒎−𝟐 𝑬 = 𝟏𝟎𝑵𝒎−𝟐 𝑬 = 𝟏𝟓𝑵𝒎−𝟐 

0 0 0 0 

1 0.00259705 0.00167358 0.000153502 

2 0.00311542 0.000832119 0.000355707 

3 0.00093947 0.00s0750946 0.000557563 

4 0.00180220 0.00146950 0.000723602 

5 0.00288728 0.000562520 0.000834445 

6 0.00164498 0.00126111 0.000885838 

7 0.00156598 0.000979008 0.000884987 

8 0.00251070 0.000852127 0.000846539 

9 0.00203035 0.00122698 0.000787629 

10 0.00161944 0.000815122 0.00072427 

 
From the table 1, we have a graph of the beam's dynamic response at different values, i.e E = 5,10,15 
respectively.  
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Fig. 2: Dynamic response of the beam at different values of 𝐸 for 𝑚 = 3𝑘𝑔𝑚−1, 𝜇 = 1𝑘𝑔𝑚−1, 𝐼 = 3𝑘𝑔𝑚2, 𝜔𝑛
2 =

1𝑟𝑎𝑑𝑠−1, 𝐿 = 1𝑚, 𝑐 = 1𝑁𝑠𝑚−2, 𝑔 = 10𝑚𝑠−2, 𝑤1 = 0.1, 𝑘 = 1𝑝𝑎  
 

Table 2: Deflection against Time(s) at 𝑬 = 𝟓, 𝑬 = 𝟏𝟎, 𝑬 = 𝟏𝟓. 
 

TIME(s) 𝑬 = 𝟓𝑵𝒎−𝟐 𝑬 = 𝟏𝟎𝑵𝒎−𝟐 𝑬 = 𝟏𝟓𝑵𝒎−𝟐 

0 0 0 0 

1   1.99597 0.715517 0.167837 

2 0.0109109 0.808465 0.503997 

3 1.91324 -0.0020497 0.660954 

4 0.0847565 0.593629 0.474654 

5  1.77213 0.873977 0.132594 

6 0.216283 0.873977 -0.018130 

7 1.58111 0.467881 0.173828 

8 0.396818 0.921680 0.509228 

9  1.35198 0.0718092 0.642168 

10 0.614450 0.345256 0.434293 

 
From the table 2, we have a  graphs of the beam’s dynamic response at different values of E=5,10,15 
respectively. 
 



Sulaiman et al.: Effect of Winkler Foundation on the Dynamic Analysis of Euler-Bernoulli Beam Resting on Elastic… 
 

 

 
Website: koladaisiuniversity.edu.ng/kujas 

© KUJAS, Volume 2, 2025 

                        Faculty of Applied Sciences 
 

43 

 

 
 
Fig. 3: Dynamic response of the beam at different values of 𝐸 for 𝑚 = 3𝑘𝑔𝑚−1, 𝜇 = 1𝑘𝑔𝑚−1, 𝐼 = 3𝑘𝑔𝑚2, 𝜔𝑛

2 =
1𝑟𝑎𝑑𝑠−1, 𝐿 = 1𝑚, 𝑐 = 1𝑁𝑠𝑚−2, 𝑔 = 10𝑚𝑠−2, 𝑤1 = 0.1𝑟𝑎𝑑𝑠−1, 𝑘 = 1𝑝𝑎 

 
 

Table 3: Deflection against Time(s) at 𝑬 = 𝟓, 𝑬 = 𝟏𝟎, 𝑬 = 𝟏𝟓 
 

TIME(s) 𝑬 = 𝟓𝑵𝒎−𝟐 𝑬 = 𝟏𝟎𝑵𝒎−𝟐 𝑬 = 𝟏𝟓𝑵𝒎−𝟐 

0 0 0 0 

1 0.000153502 0.00167358 0.00259705 

2 0.000355707 0.000832119 0.00311542 

3 0.000557563 0.000750946 0.00093947 

4 0.000723602 0.00146950 0.00180220 

5 0.000834445 0.000562520 0.00288728 

6 0.000885838 0.00126111 0.00164498 

7 0.000884987 0.000979008 0.00156598 

8 0.000846539 0.000852127 0.00251070 

9 0.000787629 0.00122698 0.00203035 

10 0.000724276 0.000815122 0.00161944 

 
From the table 3, we have a plot of graphs dynamic response of the beam at various values of 𝐸 = 5, 𝐸 =
10, 𝐸 = 15 respectively. 
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Fig. 4: The response of the beam to the moving load at various values of 𝐸 for 𝑚 = 3kgm−1, 𝑣 = 3.3𝑚𝑠−1, 𝜇 =
1kgm−1, 𝐼 = 1𝑘𝑔𝑚2, 𝐿 = 1𝑚, 𝑐 = 1𝑁𝑠𝑚−2, 𝑔 = 10𝑚𝑠−2, 𝑤1 = 0.1𝑟𝑎𝑑𝑠−1, 𝜔𝑛

2 = 1𝑟𝑎𝑑𝑠−1 

 
Conclusion 
The vibration characteristics of beams supported 
by an elastic foundation under moving loads are 
investigated. The findings clearly demonstrate that 
having an elastic foundation and adequately 
reinforcing beams and beam-like structures lessens 
vibration intensity, ensuring safe transit of solid 
objects (loads) and extending the lifespan of the 
beam structure. Additionally, it is important to 
highlight that this outcome can serve as a 
foundational engineering design criterion. The 
graph illustrates the deflection profile of non-
uniform beams with various levels of foundation 
stiffness. Figure 2 shows the active retort of the 

beam at diverse morals of  respectively. 
It is observed that the dynamic response of the 
beam increases as the length of the load increases. 

Figure 3 displays the dynamic reply of the 
beam at diverse values  , it is pragmatic 
that the dynamic comeback of the beam increases 
as the length of the load increases.  

Figure 4 displays the dynamic retort of the 
beam at unlike values of  , 
respectively. It is perceived that the vibrant 
response of the beam increases as the 
dimension of the load increases. 
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