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Abstract

This study examined how a Winkler foundation influences the dynamic analysis of an Euler-Bernoulli beam placed
on an elastic foundation by employing an Integral-Numerical method, which simplifies to an ordinary differential
equation using a series representation of the Heaviside function. The dynamic responses of the beam, including
normalized deflection and bending moment, were analyzed for various velocity ratios under conditions of moving
loads and moving masses. In general, a closed-form solution for the generalized mathematical model of a prismatic
beam was derived using a symbolic programming technique with MAPLE 18. The findings indicated that the inclusion
of an elastic foundation along with adequate reinforcement in beams and beam-like structures decreases vibration
intensity, ensures safe load passage, and extends the lifespan of the beam.
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Introduction

A beam serves as a crucial structural component,
serving as a basic and precise framework to
evaluate complex engineering structures like
turbine and compressor blades, aircraft wings,
robotic arms, spacecraft antennas, building
frameworks, bridges, and vibrating drills similar to
a beam. For over a century, researchers have been
interested in the vibration analysis of bridge
structures that experience loads or moving masses.
This topic gained attention in civil engineering for
constructing railways and bridges, as well as in
mechanical engineering for crane trolleys that
operate on their beams, along with machining
applications. The challenge arises from the
realization that bridges subjected to the impact of
moving vehicles or trains can experience internal
dynamic deflections and stress that are
substantially higher than those caused by static
loads. The examination of the dynamic response of
structures like beams and slabs under moving
loads has captured the interest of many scholars in
engineering, applied physics, and applied
mathematics. In this scenario of moving load
problems, the mass of the load plays a significant
role since its position shifts continuously.
Considerable research has focused on this category
of dynamic issues when the structural elements
have consistent cross-sections.

The method was founded on the generalized
Galerkin's technique and integral transformations,
with the assumption of a beam featuring a uniform
cross-section. In all instances, the focus has been
on uniform beams, with non-uniform beams
addressed only wunder classical boundary
conditions. Additionally, the work of Oni and
Awodola (2011) explored the response of simply
supported rectangular plates that carry moving
masses while resting on variable Winkler elastic
foundations. For solving these equations, a
modification of Struble's technique along with the
method of integral transformations was utilized.
The set of ordinary differential equations was then
simplified and resolved using a modified
asymptotic staircase method. Although this study
is significant, it is restricted to a beam with
conventional termination conditions that are
simply supported. Other research related to
heterogeneous beams includes contributions from
Omolofe (2012) and Oni and Ogunyebi (2018).
Abdelghany et al. (2015) examined the effects of
variations in traveling velocity and the influence of
increasing the magnitude of the moving load on the
dynamic response of a non-uniform Euler-
Bernoulli simply supported beam by employing
the Galerkin and Runge-Kutta methods. It is
important to note that the majority of
investigations in this field have focused solely on

Website: koladaisiuniversity.edu.ng/kujas
© KUJAS, Volume 2, 2025
Faculty of Applied Sciences




38 KUJAS Journal: Vol. 2, 2025

classical boundary conditions. Usman (2019)
studied the series solution for an Euler-Bernoulli
beam subjected to a concentrated load. The
findings indicated that as the mass increases, the
deflection also rises; conversely, as the mass of the
beam decreases, the deflection increases as well.
Adedowole et al. (2023) conducted a critical
evaluation of a non-Winkler Timoshenko Beam,
which included rotary inertial correction and was
subjected to paired loads on subgrade. They
employed a robust method of Galerkin and integral
transforms to derive analytical procedures for the
governing equation of motion. The analysis of the
vibrating system's solutions was conducted, and
various results were presented in the form of
plotted curves.

In many practical situations, it is often more
feasible to utilize non-classical boundary
conditions since ideal boundary conditions are
seldom achieved. The issue of bridge-vehicle
interaction is a prevalent challenge in the analysis
of moving loads and constitutes a significant area
of research. If the speed of a wvehicle is
considerably low, it cannot be classified as a
moving load scenario because it behaves like a
static load condition at such low speeds. In this
case, traditional methods can effectively address
the problem. Through mathematical analysis and
calculations, these issues can be resolved.
Structural vibrations can arise from vehicle
movements, earthquakes, river currents, and wind.
For safety considerations in design, various factors
must be taken into account, including the mass of
the body and the moving structure, as well as the

inertia resulting from the moving mass of the
structure due to eccentric loading.

Bridges are typically categorized into four main
types:

(i) beam bridges,

(i) arch bridges,

(iii) suspension bridges, and

(iv) cantilever bridges.

The primary distinction among these four types of
bridges lies in the lengths they can span in a single
span. A span refers to the distance between two
supporting bridge pillars. Modern girder bridges
are capable of spanning distances up to 60 meters,
while modern arch bridges can safely manage
spans of up to 240 meters. Suspension bridges
represent the height of engineering capability,
being able to reach spans of up to 2,100 meters.
The remarkable ability of an arch bridge to span
seven times longer than a beam bridge or seven
times more than a suspension bridge is attributed
to the way each bridge type manages forces of
compression and tension.

Mathematical Formulation

Examine a non-uniform Euler-Bernoulli beam of
length L situated on a Winkler foundation, which
is subjected to a partially distributed uniformly
moving load. The oscillatory dynamics of this
system are characterized by the following partial
differential equation.

P(x.t)=Px-vt)
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Fig. 1: Beams supported by the Pasternak foundation experience moving loads.
Source: scholarsmine.mst.edu
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EILXXXX(XJ t) + mLtt(XJ t) + CLt(X: t) - lexx(X; t) = P(X, t) - Q(Xr t) (1)

Of which
L(x,t) is the displacement of the beam

x is the spatial coordinate measured along the length of the beam in m (metre)
t is the time in seconds

El is the bending stiffness of the beam in Nm?

m is the linear mass of the beam in Kgm ™1

c is the linear viscous damping coefficient of the beam in Nsm ™2

k is the flux beam shear number in Pa

1

P(x,t) are the applied external load per unit length inNm~™" , respectively

For the Winkler model, Q(x,t) = KL(x,t), where k is the elastic constant of the foundation per unit length
(N/m?).

The equation above, can be written as
When the external load P(x, t) is a concentrated load moving at a constant speed v, defined as

P(x,t) = p&(x — vt) (2)

Convective acceleration operator Ly is given as:
d2
—7 = Lee (0, 0) + 201 (x, 1) + V2L, (x, £) (3)

For simply supported beams has finite lengthL, the possible condition boundary is described
Mathematically,

L(0,t) =L(L,t)=0 (4)
L'(0,t) =L"(Lt) =0 Q)

At the beginning, the beam that is being supported is assumed to be stationary. Consequently, the initial
boundary conditions are as follows:

L(X, 0) = Ltt(XJ 0) =0 (6)
Method of Solution
ElLyynr (2, £) + ML (%, £) + cLe (2, ) — kq Ly (x, t) + kL(x, t) = p&(x — vt) (7
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Lo (%, 8) = Xy X5 ()T ()
Lix (x,8) = Bieg XAt (0T (8)
L(x,£) = 2=y Xn ()T (2)
Lee(x,1) = By Xn (0T, (£)
Le(x,t) = Tog Xn () To ()

EIYZ X2 (0T () + m I8y Xy ()T () + ¢ X2q Xy (OT (1) —
ky Xoea Xat (0T (8) + kX5 Xn (0T, (8) = pS(x — vt)

For free Vibration
Yo Xy ()T, () = pwi X, ()T, ()

EIuw2X, ()T () + MBSy X ()T () + ¢ X2y Xy ()T (£)
—ky Ye1 Xnt ()T () + k Xooq X ()T, (1) = pS(x — vt)

Integrating over the entire length of the beam and applying the orthogonal property (15), to give

fo L2 X, COT, (Odx +m f ZX GOT, (Ddx + ¢ f ZX (OT, (t)dx

—ky [ Sy XA O T (O dx +k [ Sooey Xn (x)T (Ddx = [[“p&(x — vt)dx

Multiply both sides of equation (16) by X, (x)

Jo & E Tnwl Xn 00) X 0T, (O + m [ iozg Xy () Xy (0T () dx
e 3Ty Xn Q)X COT, (Ddx — ky [ Tovey X2 (0 Xie ()T, () dx
+k [} B Xy COX ()T, (O)dx = [ p 5(x — v) X (x)dx

But

ag _ 0O,n+k
12 X, ()X, () dx = 1{1,71 T
to obtain

Elnw?T, (t) + mT, () + CT (t) —kq faa Z XA ()X, ()T, (t)dx
+T,(8) = [ p 8(x — v0) X (x)dx

Let
X,(x) = sinﬂ

nmnx

Xn(x) = —cos—

®)

)

(10)

(1

(12)

(13)

(14)

(15)

(16)

(17

(18)

(19)

(20)
€2y
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2.2
X (x) = (=) ”a; sin’;—’;" (22)
X;o(x) = sin "= (23)
Substituting equation (20)-(23) into equation (19), to obtain
, . . %an?m?  nmx | knx
Eluw;T,(t) + mT, (t) + cT,(t) + klf >—sin sin T, (t)dx
0 aa aa aa
Ga  kmx
+kT,(t) = f p 6(x — vt)sin—dx (24)
0 Qg
Collect the like term in (24), one obtain
. : 5 %Un?ng?  nmgx | knx
mT, (6) + Ty (6) + Elpe?T, (£) + kT, () + ky f sin " Sin— T, (£)dx
0 a (04 a
Qa ~ kmx
=f p6(x — vt)sin—dx (25)
0 %

Result and Discussions

The equation governing the motion of the beam is
anon-homogeneous partial differential equation of
fourth order that has varying coefficients and
heterogeneity. The dynamic beam problem's
solution is derived using an integral numerical
method, which reflects the displacement response
of the beam. Consequently, a numerical
representation of the findings from this analysis is
provided. The graphs indicate that as the axial

force values of the fixed foundation increase, the
deflection magnitude correspondingly decreases,
particularly for the foundation's stiffness.
Furthermore, for varying fixed axial force values
associated with foundation stiffness, the horizontal
deflection of the beam diminishes as the
foundation stiffness increases. Thus, heightened
foundation stiffness ensures enhanced stability and
reliability in the structural design.

Table 1: Deflection against Time(s) at E = 5,F = 10,E = 15

TIME(s) E =5Nm™2 E = 10Nm™2 E =15Nm™2
0 0 0 0

1 0.00259705 0.00167358 0.000153502
2 0.00311542 0.000832119 0.000355707
3 0.00093947 0.0050750946 0.000557563
4 0.00180220 0.00146950 0.000723602
5 0.00288728 0.000562520 0.000834445
6 0.00164498 0.00126111 0.000885838
7 0.00156598 0.000979008 0.000884987
8 0.00251070 0.000852127 0.000846539
9 0.00203035 0.00122698 0.000787629
10 0.00161944 0.000815122 0.00072427

From the table 1, we have a graph of the beam's dynamic response at different values, i.e E = 5,10,15

respectively.
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Fig. 2: Dynamic response of the beam at different values of E for m = 3kgm™,u = 1kgm™1,1 = 3kgm?, w2 =
1rads™,L = 1m,c = INsm™%,g = 10ms~2,w; = 0.1,k = 1pa

Table 2: Deflection against Time(s) at E = 5,F = 10,E = 15.

TIME(s) E = 5Nm™2 E = 10Nm™? E = 15Nm™?
0 0 0 0

1 1.99597 0.715517 0.167837
2 0.0109109 0.808465 0.503997
3 1.91324 -0.0020497 0.660954
4 0.0847565 0.593629 0.474654
5 1.77213 0.873977 0.132594
6 0.216283 0.873977 -0.018130
7 1.58111 0.467881 0.173828
8 0.396818 0.921680 0.509228
9 1.35198 0.0718092 0.642168
10 0.614450 0.345256 0.434293

From the table 2, we have a graphs of the beam’s dynamic response at different values of E=5,10,15
respectively.
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Fig. 3: Dynamic response of the beam at different values of E for m = 3kgm™,u = lkgm™,1 = 3kgm?, w?
1rads™,L = 1m,c = INsm™2,g = 10ms™2%,w; = 0.1rads™ ',k = 1pa

[—E=s—-E=10---E=15]

Table 3: Deflection against Time(s) at E = 5,F = 10,E = 15

TIME(s) E =5Nm™? E = 10Nm ™2 E = 15Nm™2
0 0 0 0

1 0.000153502 0.00167358 0.00259705
2 0.000355707 0.000832119 0.00311542
3 0.000557563 0.000750946 0.00093947
4 0.000723602 0.00146950 0.00180220
5 0.000834445 0.000562520 0.00288728
6 0.000885838 0.00126111 0.00164498
7 0.000884987 0.000979008 0.00156598
8 0.000846539 0.000852127 0.00251070
9 0.000787629 0.00122698 0.00203035
10 0.000724276 0.000815122 0.00161944

43

From the table 3, we have a plot of graphs dynamic response of the beam at various values of E = 5,FE =

10, E = 15 respectively.
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Fig. 4: The response of the beam to the moving load at various values of E for m = 3kgm™%,v = 3.3ms 1, u =
1kgm™1,1 = 1kgm?, L = 1m,c = 1INsm™2,g = 10ms~2,w; = 0.1rads™ !, w? = 1rads™?!

Conclusion

The vibration characteristics of beams supported
by an elastic foundation under moving loads are
investigated. The findings clearly demonstrate that
having an elastic foundation and adequately
reinforcing beams and beam-like structures lessens
vibration intensity, ensuring safe transit of solid
objects (loads) and extending the lifespan of the
beam structure. Additionally, it is important to
highlight that this outcome can serve as a
foundational engineering design criterion. The
graph illustrates the deflection profile of non-
uniform beams with various levels of foundation
stiffness. Figure 2 shows the active retort of the

beam at diverse morals of £ =5,10,15 respectively.
It is observed that the dynamic response of the
beam increases as the length of the load increases.

Figure 3 displays the dynamic reply of the
beam at diverse values £ = 5,10,15 it is pragmatic
that the dynamic comeback of the beam increases
as the length of the load increases.

Figure 4 displays the dynamic retort of the
beam at unlike values of — £=51015
respectively. It is perceived that the vibrant
response of the beam increases as the
dimension of the load increases.
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