Effect of Temperature and Pressure on the Addition of 4-Tertiarybutylpyridine to Tricarbonyl (1-5-n-Dienyl) Iron (II) Complexes (Dienyl = C_6H_7 , 2-Meo C_6H_6 or C_7H_9)

Timothy I. Odiaka^{1*} and Jack Lewis²

^{1*}Department of Chemical Sciences, KolaDaisi University, Km 18, Ibadan-Oyo Express Road, Ibadan Nigeria

²University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 IEW U.K.

*Corresponding Author: timothy_diaka@yahoo.co.uk DOI: https://doi.org/10.5281/zenodo.17428290

Abstract

A detailed kinetic study of the addition of 4-tertiary butylpyridine to the coordinated dienyl ligand in tricarbonyl (1-5- η -dienyl) iron (II) complexes (1; dienyl = C_6H_7 , 2-Meo C_6H_6 and C_7H_9) has been made as a function of temperature and pressure in acetonitrile using stopped-flow techniques. The reactions proceed to completion under pseudo-firstorder conditions, i.e. $k_{obs} = k_1$ [4-Me₃CPy]. The observed rate sequence $C_6H_7 > 2$ -Meo $C_6H_6 > C_7H_9$ (e.g. 18:3:1 at 20°C and 0.1 MPa) and the low Δ H^{\neq} and large negative Δ S^{\neq} and Δ V^{\neq} values support direct addition (k_1) to the dienyl fragments of complexes (1). The results contrast sharply with the reversible additions of 4-Cyanopyridine, 4formyldypridine, 2-benzylpyridine and 3-iodopyridine to complexes (1) where k_{obs} was not influenced by pressure changes up to 150 MPa, indicating a zero, volume of activation and the consequent operation of the Odiaka's "ordered transition state" mechanism.

Keywords: Temperature, complexes, stopped-flow, pyridine, volume

Introduction

Our keen interest in the intimate mechanism of amine additions to organometallics of the type $[Fe(CO)_3 (1-5-\eta-dieny)] BF_4 (1; dienyl = C_6H_7, 2-1)$ MeoC₆H₆ or C₇H₉) recently led us to investigate the influence of temperature and pressure on the reactions of 4-Cyanopyridine¹, 4-ethylpyridine² and 4-formylpyridine³, with complexes (1) in MeCN. The reactions afforded products of the type tricarbonyl (1-4-η-5-exo-N-pyridiniocyclohexa-(or Cyclohepta-) 1, 3-diene) iron complexes in good yields as previously established⁴⁻⁷ for a wide range of pyridine additions to complexes (1), and allowed mechanistic assignments based on the nature and magnitude of the \triangle H^{\neq}, \triangle S^{\neq} and \triangle V^{\neq} values. The addition reactions are generally associated with low Δ H^{\neq} values, large negative Δ S^{\neq} values and negative ΔV^{\neq} values. Whereas the reverse dissociation step is usually accompanied by significant higher Δ V^{\neq} values and positive Δ S^{\neq} and Δ V^{\neq} values. These results are consistent with direct nucleophilic attack at the coordinated organic ligand in complexes (1) during bond formation and vice-versa during bond dissociation. Cases are also known⁸⁻¹¹ where the dissociative

processes of amine additions to complexes (1) are associated with large negative $\triangle S^{\neq}$ values and we have explained this interesting observation in terms of the Odiaka's "ordered transition state" mechanism ^{8, 9}. Interestingly, both the forward addition step (k₁) and reverse dissociation step $(k_{.1})$ for these latter reactions are not influenced by pressure changes up to 150 MPa^{1,3} indicating that the volume collapse associated with the formation of the 1,3-diene products {C (diene) – N(amine) bond formation) is cancelled out by the volume increase associated with Fe-C (diene) bond breakage (reverse dissociation step), resulting in a zero activation volume. Progress has also been made in establishing the influence of amine basicity⁴ as well as the electronic and steric nature⁶ of the coordinated ligand in complexes (1) on the intimate nature of the mechanism of amine additions to organometallics of type (1). The mechanistic utility of pressure dependence studies other organometallic systems has been demonstrated in the laboratories of R.Van Eldik¹²-

As an extension of these studies, we now report the results of a dtailed temperature and

pressure dependence study of the addition of 4-tertiary butylpyridine to complexes (1; dienyl = C_6H_7 , 2-Meo C_6H_6 or C_7H_9) in MeCN (eqn. 1). A comparison of this work to those reported¹⁻³ for similar addition processes allows some correlation to be made between the basicity of the amine nucleophile and the intimate nature of amine additions to organometallics of type (1).

Materials and Methods

Materials: The complexes (1a) – (1c) were synthesized and purified as described before^{19, 20} Chemical and Spectroscopic analysis confirmed their purity. 4-tertiarybutylpyridine (4-Me₃cPy) was freshly distilled over KOH pellets and under vacuum prior to use. Acetonitrile (MeCN) was distilled in bulk and stored over molecular sieves (3A) under a dinitrogen atmosphere.

Instrumentation: Reaction I is characterized by significant UV-VIS spectral changes, in particular an absorbance decrease at 400nm, which was monitored with a Shimadzu UV 250 Spectrophotometer. Infrared studies of the products (2) were performed on a Perkin-Elmer 397 Spectrophotometer. The kinetics of reaction I was studied under pseudo-first-order conditions involving the use of a large excess of 4-Me₃cPy. The addition reactions are fast and were monitored by use of a thermostat (± 0.1 °C) Durrum D110 stopped-flow instrument coupled to an on-line data acquisition and analysis system.21 Kinetic experiments at pressures up to 150 MPa were performed on a home-made high pressure stoppedflow instrument.²² Kinetic traces showed excellent first-order behaviour under all experimental conditions, and the first-order rate constants. k_{obs}, were calculated from plots of ι n (A_{∞} - A_{t}) versus t in the usual way. Such plots were linear for at least 2 to 3 half-lives of the reaction. Reported rate constants are the mean values of 5 or 6 separate determinations. All rate and activation parameters were calculated by linear least-squares analysis. The second-order rate constants, k_1 , for the rapid addition of 4-Me₃ cPy to $\{1; \text{ dienyl} = C_6H_7 \text{ and } 2-$ MeOC₆H₆ (15-35°C)} were calculated directly from the observed rate constant (see equation 2).

Results and Discussion

Nature of the Reaction: The reaction products formed from the addition of a wide variety of pyridines to the dienyl complexes (1; dienyl = C_6H_7 and 2-Meo C_6H_6 or C_7H_9) have been isolated for X = H, 2-Me, 4-Me, 2-Et, 4-Et, 4-CN, 4-CH₃ CO and 2,4,6-Me₃¹⁻⁶ and shown to be pyridinium adducts of the type (2). In addition, in situ IR and 'Hnmr Spectral studies of several other pyridine adducts of the type (2) have clearly established the nature of such products as tricarbonyl (1-4-n-5ex0-N-pyridiniocyclohexa- (or Cyclohepta-)) 1, 3diene iron complexes⁴. The IR spectra exhibited two strong carbonyl bands at ca. 2055 and 1980 cm⁻¹. The same two VCO bands were observed during the IR studies of reaction (1) when a large excess of 4-Me₃ cPy was used, indicating the formation of the same tricarbonyl (1-4-n-5-exo-Npyridiniocyclohexa- (or Cyclohepta-)) 1, 3-diene iron complexes. In addition to the two strong V_{CO} banks at 2055 and 1980 cm⁻¹, products (2) also exhibited the characteristic broad band at ca. 1060 cm⁻¹ attributed to the BF₄⁻ anion. Thus reaction (1) proceeds to completion under the kinetic conditions employed.

Kinetics and Mechanism: Kinetic results for the reactions of complexes (1a) - (1c) with 4-Me₃ cPy are collected in Table 1. Plots of k_{obs} versus [4-Me₃cPy] are linear with zero intercepts for all three complexes, thus showing close adherence to the second-order rate law (2), where k_1 is the second-order rate constant for the direct addition of 4-Me₃cPy to the dienyl fragments of complexes (1) to form the 1, 3-diene products (2). The values of k_1 as a function of temperature are included in Table 1 and the corresponding activation

Website: koladaisiuniversity.edu.ng/kujas © KUJAS, Volume .., 2025 Faculty of Applied Sciences parameters are summarized in Table 2. The effect of pressure on $k_{\rm obs}$ for the reactions of 4-Me₃cPy with 1b and 1c was studied using 0.01 mol dm⁻³ and 0.02 mol dm⁻³ amine concentrations, respectively, for which the results (Table 3) demonstrate a rate enhancement with increasing pressure. The rapidity of the reaction of 4-Me₃cPy with 1a did not permit measurable $k_{\rm obs}$ values at high pressures.

$$k_{obs} = k_1 [4-Me_3cPy]...$$
 (2)

Strong support for direct addition of 4-Me₃ cPy to complexes (1) comes from the rates found for reaction (1). Thus the k_1 values are seen from Table 2 to decrease in the order $C_6H_7 > 2$ -Me $0C_6H_6$ > C₇H₉ (18:3:1 at 20°C and 1 atm.). The greater reactivity of the parent complex [Fe(C0)₃(1-5- ηC_6H_7)] BF₄ (1a) compared with Fe (CO)₃ (1-5- η -2-MeoC₆H₆) BF₄ (1b) is due to the mesomeric influence of the methoxide group which has been demonstrated²³ from INDO Molecular-orbital calculations to decrease the positive charge on the dienyl C(5) atom, the site of nucleophilic addition. The more pronounced increase in rate between the parent complex (1a) and $[Fe(CO)_3 (1-5-\eta-C_7H_9)]$ BF₄ (1c) is readily attributed to the steric hindrance caused by the additional methylene group in the latter if one assumes approach of 4-Me₃cPy from above the dienyl rings. The low ∆H[≠]values and large negative ΔS^{\neq} values found for reaction (1) are also consistent with an associative mechanism (Table 2). The observed rate sequence in the order $C_6H_7 > 2$ -Meo $C_6H_6 > C_7H_9$ is seen to arise from a play-off between enthalpy and entropy effects. Thus while the greater reactivity of the C₆H₇ complex compared with the C₇H₉ analogue is associated with a less negative ∆S[≠] value of -87 JK⁻¹ mol⁻¹. The intermediate rate of the 2- $M_eOC_6H_6$ complex is associated in the largest ΔV^{\neq} value of 27.8KJ ⁻¹mol⁻¹ and a very similar ΔV[≠] value as fpr the C₆H₇ complex of -87JK⁻¹mol⁻¹ (Table 2).

Added support for the associative mechanism demonstrated above for reaction (1) comes from the ΔV^{\pm} values of -7.2 cm³ mol⁻¹ and -5.8 cm³mol⁻¹ found for the 2-MeOC₆H₆ (1b) and C₇H₉ (1c) reactions respectively (Table 3). Similar results are expected for the C₆H₇ reaction whose rapidity did not permit measurable k_{obs} values. The results contrast sharply with our reports on the reversible addition of 4-cyanopridine¹, and 4-

formylpyridine³, to complexes (1) where application of pressure showed no effect on the forward (k_1) and reverse (k_{-1}) steps and was explained in terms of an interchange of bonds/"ordered transition state" concept. However, in the present study, it must be the bond formation {i.e C(diene)- N(4-Me₃cPy)} as the 4-Me₃cPy molecule adds to the C(5) atom of the dienyl fragment, that results in a volume collapse as reflected by the negative ΔV^{\neq} values found for reaction (1).

A comparison of the results obtained in this work to those reported¹⁻³ for pyridine additions to complexes (1) clearly reveals that the less basic pyridines (i.e. $pK_a < 5$) tend to go through a late, product-like transition state allowing simultaneous bond formation and bond-breaking. In terms of the associated volume changes, this means that bond formation will be partially cancelled out by bond breakage. Such reactions are consequently accompanied by a net zero volume of activation 1, ³ (inertness, to pressure change for the k₁ and k₋₁ steps) and exhibit the Odiaka's "ordered transition state: mechanism proposed earlier^{8,9}. On the other hand, the more basic pyridines (p $K_a > 5$) go through an early transition state in which bond formation plays a crucial role (negative volume of activation)². For the reactions that are reversible (pKa < 5) but which do not demonstrate the "ordered transition state" mechanism (i.e. negative entropy of activation for the dissociative step and inertness to pressure changes for the forward and reverse reactions), the k_1 step shows rate enhancement while the k-1 step shows rate respectively, with retardation, increasing pressure.³ In conclusion, the mechanism of amine additions to organometallics of type (1) can vary from an "ordered transition state" type (zero activation volume) to a highly associative bond process (negative activation volume).

Acknowledgement

Part of this work was carried out at the institute for inorganic chemistry, University of Witten/Herdecke, Witten, Germany, and at the University of Cambridge, U.K. We are grateful to Alexander Von Humboldt (AvH) foundation and the Natural Sciences and Engineering Research Council, Cambridge, U.K for financial support to T. L. O.

Professor Rudi Van Eldik is thanked immensely for the use of his highly equipped Laboratory.

References

- 1. T. I. Odiaka and R. van Eldik, J. Organomet, Chem; (1992) 425, 89.
- 2. T. I. Odiaka and R. van Eldik, J. Chem. Soc; Dalton Trans; (1992), 2215.
- 3. T. I. Odiaka and R. van Eldik, J. Organomet. Chem; (1992), 438, 131.
- 4. T. I. Odiaka and L. A. P. Kane-Maguire, J. Chem. Soc; Dalton Trans; (1981), 1162
- 5. T. I. Odiaka, J. Chem. Soc; Dalton Trans; (1986), 2707.
- T. I. Odiaka, J. Organomet. Chem; (1988), 345, 135.
- T. I. Odiaka, J. Organomet. Chem; (1988), 356, 199.
- 8. T. I. Odiaka, J. Organomet. Chem; (1987), 321, 227.
- 9. T. I. Odiaka, J. Chem. Soc; Dalton Trans; (1989), 561.
- 10. T. I. Odiaka, Inorg, Chim. Acta; (1988), 145, 267
- T. I. Odiaka, Inorg. Chim. Acta; (1989), 164, 143.

- 12. S. Wieland and R. van Eldik, Coord. Chem. Rev. (1990), 97, 155.
- 13. S. Wieland, K. Bal Reddy and R. van Eldik, Organometallics, (1990), 9, 1802.
- S. Zhang, V. Zang, G. R. Dobson and R. van Eldik, Inorg. Chem; (1991), 30, 355.
- 15. P. Vest, J. Anhaus, H. C. Bajaj and R. van Eldik, Organometallics, (1991), 10, 818.
- J. A. Venter, J. G. Leipoldt and R. van Eldik, Inorg. Chem; (1991), 30, 2207.
- 17. R. Pipoh, R, van Eldik, S. L. B. Wang and W. D. Wulff, Organometallics, (1992), 11, 490.
- 18. K. J. Schneider, A. Neubrand, R. van Eldik and H. Fischer, Organometallics, (1992), 11, 267.
- 19. A. J. Birch, P. E. Cross, J. Lewis, D. A. White and S. B. Wild, J. Chem. Soc; (A), (1968), 332.
- 20. M.A. Hashmi, J. D. Munro and P. L. Pauson, J. Chem. Soc; (A), (1967), 240.
- J. Kraft, S. Wieland, U. Kraft and R. van Eldik,
 G. I. T. Fachz. Lab. (1987), 31, 560.
- 22. R. van Eldik, D. A. Palmer, R. Schmidt and H. Kelm, Inorg. Chim. Acta; (1981), 50, 131.
- D.W. Clack and L. A. P. Kane-Maguire, unpublished work.

Table 1: Kinetic Results for Reactions of [Fe(CO)₃ (1-5-η-dienyl)] BF₄ (1.5 x 10⁻³ mol dm⁻³) with 4-tertiary butylpyridine in MeCN

Dienyl	Temp./ºC	10 ² [4-Me ₃ ^c C ₅ H ₄ N]/ mol dm ⁻³	ka obs	$k_1^b/{\rm dm^3mol^{-1}\ s^{-1}}$
C ₆ H ₇	10.3	1.0	91.0±2.0	9,100±200
		2.0	182±5	9,100±250
	15.3	1.0	115±3	11,500±300
	20.3	1.0	132±3	$13,200 \pm 300$
	25.1	1.0	165±4	16,500±400
	30.2	1.0	185±5	18,500±400
2-MeoC ₆ H ₆	10.4	1.0	13.4±0.3	1,310±20
		2.0	26.4 ± 0.6	
		4.0	52.2±1.3	
		6.0	76.3 ± 1.8	
		10.0	132±3	
	15.3	1.0	16.7±0.2	$1,670\pm20$
	20.3	1.0	21.6±0.3	$2,160\pm30$
	25.1	1.0	26.3 ± 0.3	$2,630\pm30$
	30.1	1.0	31.5±0.4	$3,150\pm40$
	35.2	1.0	36.4±0.4	$3,640\pm40$
C ₇ H ₉	10.4 - 25.1	1.0 - 10.0	5.90 - 82.2	580 – 826

^a Mean value of 5-6 kinetic runs

Website: koladaisiuniversity.edu.ng/kujas © KUJAS, Volume 2, 2025 Faculty of Applied Sciences

^b Derived from equation 2

Table 2: Rate and Activation Parameters for Reactions of [Fe(CO)₃(1-5-n-dienyl)] BF₄ with 4-tertiarybutylpyridine in MeCN^a

Dienyl	k ₁ (20°C) / dm ³ mol ⁻¹ s ⁻¹	k ₁ relative (20°C)	ΔH ₁ [≠] / kJmol ⁻¹	$\Delta S_1^{\neq} / JK^{-1}mol^{-1}$
C ₆ H ₇	13,200±300	18	23.2±1.5	-87±5
2-MeOC ₆ H ₆	2,160±30	3	27.8±1.3	-87 <u>±</u> 4
C ₇ H ₉	726 <u>±</u> 9	1	14.2±0.7	-142±2

^a Activation parameters calculated using the second-order (k_1) rate constants in Table 1.

Table 3: Effect of pressure on the addition of 4-tertiary-butylpyridine to [Fe(CO)₃ (1-5-η-dienyl)]BF₄ in MeCN

Dienyl	Temp./ºC	10 ² [amine]/mol dm ⁻³	Pressure/MP a	Kobs/S-1	$\Delta V_1^{\neq}/\text{cm}^3 \text{ mol}^{-1}$
C_6H_7			A	a	A
2-MeoC ₆ H ₆	20.1	1.0	10	19.8±0.5	-7.2 ± 0.5
		1.0	50	23.2 ± 0.5	
		1.0	100	26.6±0.6	
		1.0	150	30.2 ± 0.7	
C ₇ H ₉ ^b	20.1	2.0	10	12.8±0.3	-5.8 ± 0.6
		2.0	50	14.5 ± 0.3	
		2.0	100	15.6±0.4	
		2.0	150	18.1 ± 0.4	

^a Reaction is too fast for the high pressure S/F system.

HOW TO CITE.

Odiaka, T. I., & Lewis, J. (2025). Effect of Temperature and Pressure on the Addition of 4- Tertiarybutylpyridine to Tricarbonyl (1-5-n-Dienyl) Iron (II) Complexes Dienyl = C6H7, 2-MeoC6H6 or C7H9). KolaDaisi University Journal of Applied Sciences, 2, 1-6. https://doi.org/10.5281/zenodo.17428290

^b Results from reference 13